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Abstract

This report documents the results of an FY09 ASC V&V Methods level 2 mile-
stone demonstrating new algorithmic capabilities for mixed aleatory-epistemic un-
certainty quantification. Through the combination of stochastic expansions for com-
puting aleatory statistics and interval optimization for computing epistemic bounds,
mixed uncertainty analysis studies are shown to be more accurate and efficient than
previously achievable. Part I of the report describes the algorithms and presents
benchmark performance results. Part II applies these new algorithms to UQ analysis
of radiation effects in electronic devices and circuits for the QASPR program.
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Executive Summary

Uncertainty quantification (UQ) is the process of determining the effect of input
uncertainties on response metrics of interest. These input uncertainties may be char-
acterized as either aleatory uncertainties, which are irreducible variabilities inherent
in nature, or epistemic uncertainties, which are reducible uncertainties resulting from
a lack of knowledge. Since sufficient data is generally available for aleatory uncer-
tainties, input probability distributions can be defined and probabilistic methods are
commonly used. Conversely, for epistemic uncertainties, data is generally too sparse
to support probabilistic input descriptions, leading to nonprobabilistic approaches
based on interval specifications.

For efficient computation of aleatory statistics, this report proposes the usage of
collocation-based stochastic expansion methods. When employing optimal polyno-
mial bases for problems with sufficient response smoothness, exponential convergence
rates can be obtained for aleatory statistics with the use of methods such as poly-
nomial chaos expansions and stochastic collocation. Compared to the relatively slow
polynomial convergence rate ( 1√

N
) of traditional sampling methods, stochastic expan-

sions can demonstrate impressive advantages in efficiency. We explore approaches
based on purely aleatory expansions as well as combined aleatory-epistemic expan-
sions, where both approaches support derivatives of statistics with respect to the
epistemic parameters.

Resolution of epistemic interval bounds through traditional sampling approaches suf-
fers from the same slow 1√

N
convergence rate. Since the desired minima and maxima

of the output ranges are local point solutions in the epistemic parameter space (as op-
posed to integrated quantities), a more directed technique is to employ optimization
methods to compute these extrema, resulting in more precise output bounds at lower
cost. In this report, we explore the use of adaptive global optimization approaches
based on expected improvement of Gaussian process models (for non-monotonic prob-
lems) as well as local gradient-based optimization approaches based on stochastic sen-
sitivity analysis (for monotonic and potentially high dimensional problems), where as
much information as possible is shared between the minimization and maximization
subproblem computations.

When both aleatory and epistemic uncertainties are present, it is desirable to main-
tain a segregation between aleatory and epistemic sources within a nested analy-
sis procedure known as second-order probability. Current production analyses for
mixed UQ employ the use of nested sampling, where each sample taken from epis-
temic intervals at the outer loop results in an inner loop sampling over the aleatory
probability distributions. For ASC-scale models of interest, nested sampling typi-
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cally results in significantly under-resolved results, particularly at the epistemic outer
loop. This under-resolution of epistemic intervals manifests itself as a nonconserva-
tive under-prediction of possible outcomes, which would be an important concern in
mission-critical national security applications. By instead combining the stochastic
expansion machinery for aleatory uncertainty with optimization-based interval es-
timation for epistemic uncertainty, the second-order probability approach becomes
more tailored for the distinct goals at the different nested analysis levels, resulting
in more efficient computation, more precise results, and greater overall confidence in
the UQ assessment.

In Part I of this report, algebraic benchmark problems of differing dimensionality
and smoothness are used to demonstrate the performance of these methods relative
to nested sampling approaches. In these benchmarks, reductions of at least five
orders of magnitude in simulation expense (100000x speedup) are demonstrated while
simultaneously obtaining more precise results. The most effective and affordable
approaches are then carried forward in mixed UQ studies for radiation-hardened
electronics within the QASPR program in Part II of this report.

This milestone crosscuts multiple centers, drawing on capabilities for uncertainty
analysis from DAKOTA (1410), device and circuit simulation from Charon and Xyce
(1430), and QASPR data analysis, model development, and program relevance (0410,
1340, 1430, 1540). New capabilities developed for this milestone are being inserted
into production UQ analysis procedures for current and future radiation effects stud-
ies, and this trend is expected to continue with V&V efforts in other program areas.

12



Chapter 1

Introduction

Uncertainty quantification (UQ) is the process of determining the effect of input
uncertainties on response metrics of interest. These input uncertainties may be char-
acterized as either aleatory uncertainties, which are irreducible variabilities inherent
in nature, or epistemic uncertainties, which are reducible uncertainties resulting from
a lack of knowledge. Since sufficient data is generally available for aleatory uncer-
tainties, probabilistic methods are commonly used for computing response distribu-
tion statistics based on input probability distribution specifications. Conversely, for
epistemic uncertainties, data is generally too sparse to support probabilistic input
descriptions, leading to nonprobabilistic methods based on interval specifications.

1.1 Aleatory UQ

One technique for the analysis of aleatory uncertainties using probabilistic methods is
the polynomial chaos expansion (PCE) approach to UQ. In this work, we start from
a foundation of generalized polynomial chaos using the Wiener-Askey scheme [55],
in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogo-
nal polynomials are used for modeling the effect of uncertain variables described by
normal, uniform, exponential, beta, and gamma probability distributions, respec-
tively1. These polynomial selections are optimal for these distribution types since
they are orthogonal with respect to an inner product weighting function that corre-
sponds (identical support range, weight differs by at most a constant factor) to the
probability density functions for these continuous distributions. Orthogonal poly-
nomials can be computed for any positive weight function, so these five classical
orthogonal polynomials may be augmented with numerically-generated polynomials
for other probability distributions; in particular, for the lognormal, loguniform, tri-
angular, gumbel, frechet, weibull, and bin-based histogram distributions additionally
supported by DAKOTA. When independent standard random variables are used (or
computed through transformation), the variable expansions are uncoupled, allowing
the polynomial orthogonality properties to be applied on a per-dimension basis. This
allows one to mix and match the polynomial basis used for each variable without

1Orthogonal polynomial selections also exist for discrete probability distributions, but are not
explored here.
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interference with the spectral projection scheme for the response. With usage of the
optimal basis corresponding to each the random variable types, exponential conver-
gence rates can be obtained for statistics of interest.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos
expansion coefficients for response metrics of interest is based on a set of simulation re-
sponse evaluations. To calculate these response PCE coefficients, two primary classes
of approaches have been proposed: spectral projection and linear regression. The
spectral projection approach projects the response against each basis function using
inner products and employs the polynomial orthogonality properties to extract each
coefficient. Each inner product involves a multidimensional integral over the support
range of the weighting function, which can be evaluated numerically using sampling,
quadrature, or sparse grid approaches. The linear regression approach (also known
as point collocation or stochastic response surfaces) uses a single linear least squares
solution to solve for the PCE coefficients which best match a set of response values
obtained from a design of computer experiments.

Stochastic collocation (SC) is a second stochastic expansion approach that is closely
related to PCE. Whereas PCE estimates coefficients for known orthogonal polyno-
mial basis functions, SC forms Lagrange interpolation functions for known coeffi-
cients. Since the ith interpolation function is 1 at collocation point i and 0 for all
other collocation points, it is easy to see that the expansion coefficients are just the
response values at each of the collocation points. The formation of multidimensional
interpolants with this property requires the use of structured collocation point sets
derived from tensor products or sparse grids. The key to the approach is performing
collocation using the Gauss points and weights from the same optimal orthogonal
polynomials used in PCE, which results in the same exponential convergence rates.

1.2 Stochastic Sensitivity Analysis

Once PCE or SC representations have been obtained for a response metric of interest,
analytic expressions can be derived for the moments of the expansion (from integration
over the aleatory/probabilistic random variables) and for the derivatives of these
moments with respect to other nonprobabilistic variables, allowing for efficient design
under uncertainty and mixed aleatory-epistemic UQ formulations involving moment
control or bounding. In this report, we are interested in the latter, where bounds on
moment-based metrics are computed using gradient-based interval estimation. This
report presents two approaches for calculation of sensitivities of moments with respect
to nonprobabilistic dimensions (design or epistemic), one involving response function
expansions over both probabilistic and nonprobabilistic variables and one involving
response derivative expansions over only the probabilistic variables. In the former
case, the dimensionality of the expansions is increased (requiring increased simulation
runs to construct them), but the technique remains zeroth-order and the expansion
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spans the design/epistemic space (or potentially some subset of it). In the latter case,
the expansion dimensionality is not increased, but accurate gradients with respect to
the nonprobabilistic variables are now required for each simulation and the expansion
over aleatory variables must be regenerated for each new design/epistemic point.

1.3 Mixed Aleatory-Epistemic UQ

A common approach to quantifying the effects of mixed aleatory and epistemic un-
certainties is to perform second-order probability (SOP) analyses [23]. In SOP, we
treat the aleatory and epistemic variables separately, and perform nested iteration,
typically sampling epistemic variables on the outer loop, then sampling over aleatory
variables on the inner loop. In this fashion, we generate families or ensembles of dis-
tributions, where each distribution represents the uncertainty generated by sampling
over the aleatory variables. Given that the ensemble stems from multiple realizations
of the epistemic uncertainties, the interpretation is that each distribution instance
has no relative probability of occurrence, only that each instance is possible. For pre-
scribed statistic on the response (such as a mean or percentile), an interval on that
statistic of interest is computed based on the ensemble. This interval on a statistic
is interpreted simply as a possible range, where the statistic could take any of the
possible values in the range.

SOP can become computationally expensive when it is implemented using two nested
sampling loops. However, the SOP procedure has the advantage that it is easy to
separate and identify the aleatory vs. epistemic uncertainty. Each particular set of
epistemic variable values generates an entire cumulative distribution function (CDF)
for the response quantities based on the aleatory uncertainty. Plotting the entire
ensemble of CDFs will allow one to visualize the upper and lower bound on the
family of distributions (these plots are sometimes called horsetail plots since the
CDFs overlaid on each other can resemble a horse’s tail). Thus, a goal in this work
is to preserve the advantages of uncertainty separation for purposes of visualization
and interpretation, but address algorithmic issues with accuracy and efficiency of the
SOP approach.

In this report, we propose a new approach for performing SOP analysis in which the
inner-loop CDFs will be calculated using a stochastic expansion method, and the
outer loop bounds will be computed with interval optimization. The advantages of
this can be significant, due to several factors. First, the stochastic expansion methods
can be much more efficient than sampling for calculation of a CDF (exponential
convergence rates instead of 1√

N
polynomial rate). Another advantage is the ability

to compute analytic statistics and their derivatives using the stochastic sensitivity
approaches. This enables efficient gradient-based local approaches (such as sequential
quadratic programming) and nongradient-based global approaches (such as efficient
global optimization) to computing response intervals through direct minimization
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and maximization of the response over the range of the epistemic inputs. These
optimization methods are more directed and will generally be more efficient than
using random sampling to estimate the interval bounds. This interval estimation
procedure is then used to define either the outer loop of a SOP approach or the cell
computation component within the Dempster-Shafer theory of evidence approach.

1.4 Outline of Report

Chapter 2 describes the outer loop of local and global optimization-based interval
estimation; Chapter 3 describes the inner loop of collocation-based stochastic expan-
sion methods; Chapter 4 presents computational experiments using these methods
for algebraic benchmark test problems; and Chapter 5 presents concluding remarks.
Part II of this report includes additional computational results for UQ analysis of
electronic devices and circuits for Sandia’s QASPR program.
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Chapter 2

The Outer Loop:

Optimization-Based Interval

Estimation

2.1 Epistemic Uncertainty Quantification

Epistemic uncertainty is sometimes referred to as state of knowledge uncertainty,
subjective uncertainty, or reducible uncertainty, meaning that the uncertainty can be
reduced through increased understanding (research), or increased and more relevant
data [24]. There are a variety of approaches to propagating epistemic uncertainty, each
of which differs significantly from traditional probabilistic propagation techniques.

The simplest way to propagate epistemic uncertainty is by interval analysis. In inter-
val analysis, it is assumed that nothing is known about the uncertain input variables
except that they lie within certain intervals. The problem of uncertainty propagation
then becomes an interval analysis problem: given inputs that are defined within in-
tervals, what is the corresponding interval on the outputs? Although interval analysis
is conceptually simple, in practice it can be difficult to determine the more effective
solution approach. A direct approach is to use optimization to find the maximum and
minimum values of the output measure of interest, which correspond to the upper
and lower interval bounds on the output, respectively. In practice, it may require
a large number of function evaluations to determine these optima, especially if the
simulation is very nonlinear with respect to the inputs, has a high number of inputs
with interaction effects, exhibits discontinuities, etc.

Interval methods are only one approach to characterizing and modeling epistemic
uncertainty. There are many others, including possibility theory, fuzzy set theory,
and Dempster-Shafer evidence theory [23]. In this report, we focus primarily on
interval methods, with some discussion of evidence theory.

We are interested in problems where all of the epistemic uncertain variables are char-
acterized by intervals (a “pure” epistemic analysis) and in problems which have a mix-
tured of aleatory and epistemic uncertain inputs. In this mixed-case, we commonly
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use a nested approach, where the “outer-loop” refers to treatment of the epistemic
variables and the “inner-loop” refers to treatment of the aleatory variables. The seg-
regation of epistemic and aleatory variables and their treatment by nested iteration
is called second-order probability and is discussed in Section 2.3. We conclude this
chapter with a discuss of Dempster-Shafer evidence theory in Section 2.4 and how
the interval-based optimization methods discussed can be extended to this case.

2.2 Interval Optimization

This section presents a general formulation for determining interval bounds on the
output measures of interest in the case of mixed epistemic-aleatory uncertainties.
Given the capability to compute analytic statistics of the response along with design
sensitivities of these statistics, we pursue optimization-based interval estimation ap-
proaches for epistemic and mixed aleatory-epistemic uncertainty quantification. We
first present the optimization interval estimation process, followed by two UQ ap-
proaches in Sections 2.3 and 2.4 that may employ it.

Where applicable, we will employ derivatives of the statistics with respect to the
nonprobabilistic parameters in order to guide optimization processes. But rather
than performing a single minimization of an objective function subject to constraints
as for OUU problems described in [14], we will solve two related bound-constrained
problems:

minimize M(s)

subject to sL ≤ s ≤ sU (2.1)

maximize M(s)

subject to sL ≤ s ≤ sU (2.2)

where M(s) is a metric of interest, probabilistic in the general mixed uncertainty
case and deterministic in the pure epistemic case. That is, in the general case of
mixed aleatory and epistemic variables, we are computing an interval on a statistic of
a response function (mean, variance, or CDF/CCDF ordinate/abscissa), and in the
pure epistemic case (no aleatory uncertain variables), we are computing an interval
on the response function itself.

There are a number of algorithms that can solve these bound constrained optimization
problems, which are categorized below as either simulation-based or surrogate-based
methods and as either global, local, or sampling methods.

• Simulation-based methods interface directly with the calculation of the metric
being optimized, without any surrogate model indirection.
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– Local gradient-based optimization solvers, such as bound-constrained New-
ton and quasi-Newton methods (see Section 2.2.1). Local optimization
solvers are best for smooth monotonic problems as they require accurate,
reliable sensitivities and do not guarantee the location of global optima.
They do, however, scale to larger dimensional problems.

– Global optimizers, such as multi-start local search, genetic algorithms,
DIRECT, etc. These approaches can be very expensive, but have a much
higher probability of locating global optima since they search the entire
parameter domain.

– Sampling methods, such as Latin hypercube sampling. This simple ap-
proach is not really an optimization algorithm; however it can estimate
the upper and lower bounds of the response metric by sampling from the
uncertain interval inputs and then taking the maximum and minimum from
the set of output values obtained during the sampling process [45]. Usually
a uniform distribution is assumed over the input intervals, although this is
not necessary (if monotonicity in the response was probable, a distribution
weighted more heavily at the input bounds would be preferred). Although
uniform distributions may be used to create samples, one cannot assign
a probabilistic distribution to them or make a corresponding probabilis-
tic interpretation of the output. That is, one cannot make a CDF of the
output: all one can assume is that sample input values were generated,
corresponding sample output values were created, and the minimum and
maximum of the output are the estimated output interval bounds. This
sampling approach is easy to implement, but its accuracy is highly de-
pendent on the number of samples. Often, sampling will generate output
bounds which underestimate the true output interval.

• Surrogate-based methods employ inexpensive approximations (e.g., polynomial
regression, neural nets, adaptive splines, kriging, etc.) to the true metric being
optimized in order to smooth noisy response functions, capture trends, and
reduce expense. The expense of these methods is dominated by the cost of
constructing and updating the surrogate models.

– Local methods, such as first-order trust region model management based
on data fits, multifidelity models, or reduced-order models [13].

– Global methods, such as efficient global optimization (see Section 2.2.2).

– Sampling methods, such as Latin hypercube sampling. This approach
starts with coarse sampling and uses these samples to create a surrogate
model. The surrogate model can then be sampled very extensively (e.g. a
million times) to obtain upper and lower bound estimates.

At the interval estimation level, a key to computational efficiency is reusing as much
information as possible within the solution procedures for these two related optimiza-
tion problems. For gradient-based local approaches, we may only be able to reuse the
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evaluation of aleatory statistics and their derivatives at the initial epistemic point.
For nongradient-based global approaches, however, we will make significant reuse of
surrogate model interpolation (EGO) and box partitioning (DIRECT) data. In ad-
dition, the same OUU machinery that we have developed in DAKOTA for bi-level,
sequential, and multifidelity approaches [14] can be applied to reduce expense. At the
aleatory UQ level, a key issue is the use of combined variable expansions over both
epistemic and aleatory parameters (see Section 3.4.2.4) versus the use of expansions
over only the aleatory parameters for each instance of the epistemic parameters (see
Section 3.4.2.3). In this report, we focus on four combinations: bi-level nongradient-
based global interval estimation employing combined and aleatory expansions and
bi-level gradient-based local interval estimation employing combined and aleatory
expansions along with their stochastic sensitivities.

In the following sections, we discuss specific optimization methods for interval esti-
mation in greater detail; in particular, local gradient-based methods and the efficient
global optimization approach (based on adaptive refinement of a Gaussian process
surrogate model by a global optimizer) to interval estimation.

2.2.1 Local Optimization

Gradient-based algorithms are typically very efficient optimization methods. How-
ever, their performance depends on having accurate gradients, and they usually only
guarantee finding local optima. In the case of “pure” interval optimization, where
we are trying determine output bounds only as a function of interval epistemic vari-
ables, the gradient of the response measures with respect to the epistemic variables is
required. In the case of mixed aleatory-epistemic problems, the gradient of the inner-
loop statistical measures (e.g. functions of the aleatory variables) with respect to
the epistemic variables is required. One advantage of the stochastic expansion meth-
ods as compared with plain sampling methods for the inner loop calculations is that
the expansion methods do allow the formulation of analytic gradients of statistical
moments with respect to epistemic variables.

In DAKOTA, we offer two main approaches for gradient-based interval optimiza-
tion, although others may be used. The first algorithm is a Sequential Quadratric
Programming (SQP) implementation that is part of the NPSOL library [21]. SQP
algorithms are nonlinear programming techniques which use Newton’s method to
solve the Karush-Kuhn-Tucker first order necessary conditions for optimality based
on a Lagrangian function. The second algorithm is a nonlinear interior point method
which uses a quasi-Newton solver that is part of the OPT++ library [32]. Since
Eqs. 2.1-2.2 do not include general nonlinear constraints, the distinction between the
two methods is subtle and both are basically quasi-Newton methods based on BFGS
updating.
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2.2.2 Efficient Global Optimization

Many of the simulation models used for uncertainty analysis are very expensive in
terms of computational cost. In this situation, we cannot afford to run the simulation
model hundreds or thousands of times as part of an optimization to determine output
interval bounds when the inputs are characterized by intervals. Instead, surrogate
methods (also called meta-models or response-surfaces) are used. We use an opti-
mization approach based on a method called Efficient Global Optimization (EGO)
developed in [Jones, Schonlau, and Welch] [28]. EGO relies on a Gaussian process
surrogate mode. EGO was developed to facilitate the unconstrained minimization
of expensive implicit response functions. The idea in EGO is to use properties of
the Gaussian process (specifically, the predicted variance in the estimate at potential
points in the space) to balance exploitation of existing good solutions with exploration
of parts of the domain which are sparsely populated and where a potential optimum
could be located.

The method builds an initial Gaussian process model as a global surrogate for the
response function, then adaptively selects additional samples to be included in the
Gaussian process model in subsequent iterations. The new samples are selected based
on how much they are expected to improve the current best solution to the optimiza-
tion problem using a criteria coded into an expected improvement function (EIF).
There are a number of variations on the concept of using a Gaussian process surro-
gate in optimization, including [30], [27], and [4].

We have taken the EGO concept and have adapted it for interval estimation in order
to allow reuse of data between the minimization and maximization subproblems.
We first build the GP for function minimization, then we take the existing points
generated by that process, change the objective function and expected improvement
function to perform function maximization, and then reuse the same GP to find the
maximum response value. We have found this approach to be very efficient, where
the majority of true function evaluations of the simulation model are performed in
finding the function minimum, and only a few additional samples are added to the
GP to find the function maximum. The performance of this EGO-based interval
optimization will depend on the nonlinearity of the simulation model and the number
of input dimensions. We have seen it perform very well relative to other surrogate-
based methods on low dimensional problems. For example, the EGO method based
on an adaptive surrogate model can often find minimum and maximum estimates
of the output measures based on 30-40 function evaluations whereas optimization
performed on a surrogate constructed on a fixed sample set may require a hundred
samples or more.

The basic outline of the EGO algorithm is as follows:

1. Generate a Latin Hypercube sample (LHS) over the input points, and evaluate
the objective function by running the simulation model at these points.
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2. Build an initial Gaussian process model of the objective function.

3. Find the point that maximizes the EIF. If the EIF value at this point is suffi-
ciently small, stop.

4. Evaluate the objective function at the point where the EIF is maximized. Up-
date the Gaussian process model using this new point. Go to Step 2.

We augment the procedure above by a few more steps. After the point is found
which minimizes the EIF (corresponding to the minimum of the function over the
domain),we then take all of the true function evaluations (e.g. simulation runs) from
the minimization step and reuse them within another GP search where we switch the
sign of the expected improvement function so that we are maximizing the function.
These subseqent steps are:

5. Redefine the EIF to indicate function maximization, not minimization. Note
that the GP itself is unchanged.

6. Find the point that maximizes the EIF. If the EIF value at this point is suffi-
ciently small, stop.

7. Evaluate the objective function at the point where the EIF is maximized. Up-
date the Gaussian process model using this new point. Go to Step 6.

The next subsections describe the Gaussian process and the expected improvement
function that we used in more detail. The DIRECT optimizer is also briefly described.

2.2.2.1 Gaussian Process Model

Gaussian process (GP) models differ from most other surrogate models because they
provide not just a predicted value at an unsampled point, but also and estimate of the
prediction variance. This variance gives an indication of the uncertainty in the GP
model, which results from the construction of the covariance function. This function is
based on the idea that when input points are near one another, the correlation between
their corresponding outputs will be high. As a result, the uncertainty associated with
the model’s predictions will be small for input points which are near the points used
to train the model, and will increase as one moves further from the training points.

It is assumed that the true response function being modeled G(u) can be described
by: [4]

G(u) = h(u)Tβ + Z(u) (2.3)

where h() is the trend of the model, β is the vector of trend coefficients, and Z() is
a stationary Gaussian process with zero mean (and covariance defined below) that
describes the departure of the model from its underlying trend. The trend of the
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model can be assumed to be any function. We use a quadratic trend function, but a
constant value is often assumed to be sufficient [38].

The covariance between outputs of the Gaussian process Z() at points a and b is
defined as:

Cov [Z(a), Z(b)] = σ2
ZR(a,b) (2.4)

where σ2
Z is the process variance and R() is the correlation function. There are

several options for the correlation function, but the squared-exponential function is
common [38], and is used here for R():

R(a,b) = exp

[

−

d
∑

i=1

θi(ai − bi)
2

]

(2.5)

where d represents the dimensionality of the problem (the number of random vari-
ables), and θi is a scale parameter that indicates the correlation between the points
within dimension i. A large θi is representative of a short correlation length.

The expected value µG() and variance σ2
G() of the GP model prediction at point u

are:

µG(u) = h(u)Tβ + r(u)TR−1(g − Fβ) (2.6)

σ2
G(u) = σ2

Z −
[

h(u)T r(u)T
]

[

0 FT

F R

]−1 [

h(u)
r(u)

]

(2.7)

where r(u) is a vector containing the covariance between u and each of the n training
points (defined by Eq. 2.4), R is an n× n matrix containing the correlation between
each pair of training points, g is the vector of response outputs at each of the training
points, and F is an n×q matrix with rows h(ui)

T (the trend function for training point
i containing q terms; for a constant trend q=1). This form of the variance accounts for
the uncertainty in the trend coefficients β, but assumes that the parameters governing
the covariance function (σ2

Z and θ) have known values. The parameters σ2
Z and θ

are determined through maximum likelihood estimation. This involves taking the log
of the probability of observing the response values g given the covariance matrix R,
which can be written as: [38]

log [p(g|R)] = −
1

n
log|R| − log(σ̂2

Z) (2.8)

where |R| indicates the determinant of R, and σ̂2
Z is the optimal value of the variance

given an estimate of θ and is defined by:

σ̂2
Z =

1

n
(g − Fβ)TR−1(g − Fβ) (2.9)

Maximizing Eq. 2.8 gives the maximum likelihood estimate of θ, which in turn defines
σ2
Z . We use an iterative procedure defined in John McFarland’s dissertation [31] to

calculate the β, θ, and σ2
Z parameters which define the GP. We use a global solver,

DIRECT, to find these optimal parameters.
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2.2.2.2 Expected Improvement Function

The expected improvement function is used to select the location at which a new
training point should be added. The EIF is defined as the expectation that any point
in the search space will provide a better solution than the current best solution based
on the expected values and variances predicted by the GP model. An important
feature of the EIF is that it provides a balance between exploiting areas of the design
space where good solutions have been found, and exploring areas of the design space
where the uncertainty is high. First, recognize that at any point in the design space,
the GP prediction Ĝ() is a Gaussian distribution:

Ĝ(u) ∼ N [µG(u), σG(u)] (2.10)

where the mean µG() and the variance σ2
G() were defined in Eqs. 2.6 and 2.7, respec-

tively. The EIF is defined as: [28]

EI
(

Ĝ(u)
)

≡ E
[

max
(

G(u∗) − Ĝ(u), 0
)]

(2.11)

where G(u∗) is the current best solution chosen from among the true function values
at the training points (henceforth referred to as simply G∗). This expectation can
then be computed by integrating over the distribution Ĝ(u) with G∗ held constant:

EI
(

Ĝ(u)
)

=

∫ G∗

−∞
(G∗ −G) Ĝ(u) dG (2.12)

where G is a realization of Ĝ. This integral can be expressed analytically as: [28]

EI
(

Ĝ(u)
)

= (G∗ − µG) Φ

(

G∗ − µG

σG

)

+ σG φ

(

G∗ − µG

σG

)

(2.13)

where it is understood that µG and σG are functions of u. The point at which the EIF
is maximized is selected as an additional training point. With the new training point
added, a new GP model is built and then used to construct another EIF, which is
then used to choose another new training point, and so on, until the value of the EIF
at its maximized point is below some specified tolerance. In [27] this maximization
is performed using a Nelder-Mead simplex approach, which is a local optimization
method. Because the EIF is often highly multimodal, it is expected that Nelder-
Mead may fail to converge to the true global optimum. In [28], a branch-and-bound
technique for maximizing the EIF is used, but was found to often be too expensive
to run to convergence. In this report, an implementation of the DIRECT global
optimization algorithm is used [17]. The DIRECT (DIviding RECTangles) algorithm
is a derivative free global optimization method that balances local search in promising
areas of the space with global search in unexplored regions. DIRECT adaptively
subdivides the space of feasible design points (into smaller hyperrectangles) so as to
guarantee that iterates are generated in the neighborhood of a global minimum in
finitely many iterations. We use Joerg Gablonsky’s implementation of DIRECT.
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It is important to understand how the use of this EIF leads to optimal solutions.
Eq. 2.13 indicates how much the objective function value at x is expected to be less
than the predicted value at the current best solution. Because the GP model pro-
vides a Gaussian distribution at each predicted point, expectations can be calculated.
Points with good expected values and even a small variance will have a significant
expectation of producing a better solution (exploitation), but so will points that have
relatively poor expected values and greater variance (exploration).

2.3 Second-order probability

In second-order probability [44] (SOP), we segregate the aleatory and epistemic vari-
ables and perform nested iteration, with aleatory analysis on the inner loop and epis-
temic analysis on the outer loop [23]. Starting from a specification of intervals and
probability distributions on the inputs (as described in Section 3.4.2.5, the intervals
may augment the probability distributions, insert into the probability distributions,
or some combination), we generate an ensemble of CDF/CCDF probabilistic results,
one CDF/CCDF result for each aleatory analysis. Given that the ensemble stems
from multiple realizations of the epistemic uncertainties, the interpretation is that
each CDF/CCDF instance has no relative probability of occurrence, only that each
instance is possible. For prescribed response levels on the CDF/CCDF, an interval
on the probability is computed based on the bounds of the horse tail at that level,
and vice versa for prescribed probability levels.

Second-order probability may be expensive since it is often implemented with two
sampling loops. However, it has the advantage that it is easy to separate and identify
the aleatory vs. epistemic uncertainty. Each particular set of epistemic variable values
generates an entire CDF/CCDF for the response quantities based on the aleatory
uncertainty. So, for example, if one had 50 values or samples taken of the epistemic
variables, one would have 50 CDFs. Plotting the entire ensemble of CDFs will allow
one to see the upper and lower bound on the family of distributions. Plots of ensembles
of CDFs generated in second-order probability analysis are sometimes called horsetail
plots since the CDFs overlaid on each other can resemble a horse’s tail.

In this report, we propose a new approach for performing second-order probability
analysis. In this approach, the inner-loop CDFs will be calculated using a stochastic
expansion method, and the outer loop bounds will be performed via interval opti-
mization. The advantages of this can be significant, due to several factors. The first
is that the stochastic expansion methods can be much more efficient than sampling
for calculation of a CDF (exponential convergence rates instead of 1√

N
polynomial

rate). The second advantage is that stochastic expansion methods allow analytic
representation of the moments and the derivatives of the moments with respect to
the epistemic variables in the outer loop can be written analytically. These analytic
derivatives can then be used within optimization methods to find interval bounds on
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mean and variance, for example. Finally, the optimization methods in the outer loop
are more directed and will often be more efficient than generating outer loop samples
to estimate outer loop bounds.

2.4 Dempster-Shafer

In the Dempster-Shafer theory of evidence [44] (DSTE) approach, we start from a set
of basic probability assignments (BPAs) for the epistemic uncertain variables, typi-
cally derived from a process of expert elicitation. These BPAs define sets of intervals
for each epistemic variable, and for each possible combination of these intervals among
the variables, we solve minimization and maximization problems for the interval of
the response. These intervals define belief and plausibility functions that bound the
true probability distribution of the response.

More specifically, each input variable may be defined by one or more intervals. The
user assigns a basic probability assignment (BPA) to each interval, indicating how
likely it is that the uncertain input falls within the interval. The BPAs for a partic-
ular uncertain input variable must sum to one. The intervals may be overlapping,
contiguous, or have gaps. Dempster-Shafer has two measures of uncertainty, belief
and plausibility. The intervals are propagated to calculate belief (a lower bound on
a probability value that is consistent with the evidence) and plausibility (an upper
bound on a probability value that is consistent with the evidence). Together, belief
and plausibility define an interval-valued probability distribution on the results, not
a single probability distribution.

The main method for calculating Dempster-Shafer belief structures is computation-
ally very expensive. Typically, hundreds of thousands of samples are taken over the
space. Each combination of input variable intervals defines an input “ cell.” [25]
By interval combination, we mean the first interval of the first variable paired with
the first interval for the second variable, etc. Within each interval calculation, it is
necessary to find the minimum and maximum function value for that interval “cell.”
These minimum and maximum values are aggregated to create the belief and plausi-
bility curves. The accuracy of the Dempster-Shafer results is highly dependent on the
number of samples and the number of interval combinations. If one has many interval
cells and few samples, the estimates for the minimum and maximum function evalua-
tions are likely to be poor. The Dempster-Shafer method may use a surrogate model
and/or optimization methods. We have extended the interval-optimization methods
defined in Section 2.2.2 to Dempster-Shafer calculations with promising results [47].

Dempster-Shafer evidence theory is an attractive approach to propagation of evidence
theory when using computational simulations, in part because it is a generalization of
classical probability theory which allows the simulation code to remain black-box (it
is non-intrusive to the code) and because the Dempster-Shafer calculations use much

26



of the probabilistic framework that exists in most places [24].

Dempster-Shafer theory is generally considered an approach for treating epistemic
uncertainties. When aleatory uncertainties are also present, we may choose either
to discretize the aleatory probability distributions into sets of intervals and treat
them as well-characterized epistemic variables, or we may choose to segregate the
aleatory uncertainties and treat them within an inner loop. In this latter case, DSTE
can be seen as a generalization of SOP, in that the SOP interval minimization and
maximization process is performed repeatedly for each “cell” defined by the BPAs
in the DSTE analysis. As for SOP, this nested DSTE analysis reports intervals
on statistics, and in particular, belief and plausibility results for statistics that are
consistent with the epistemic evidence.
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Chapter 3

The Inner Loop: Stochastic

Expansion Methods

3.1 Polynomial Basis

3.1.1 Orthogonal polynomials in the Askey scheme

Table 3.1 shows the set of polynomials which provide an optimal basis for different
continuous probability distribution types. It is derived from the family of hypergeo-
metric orthogonal polynomials known as the Askey scheme [2], for which the Hermite
polynomials originally employed by Wiener [50] are a subset. The optimality of these
basis selections derives from their orthogonality with respect to weighting functions
that correspond to the probability density functions (PDFs) of the continuous distri-
butions when placed in a standard form. The density and weighting functions differ
by a constant factor due to the requirement that the integral of the PDF over the
support range is one.

Table 3.1. Linkage between standard forms of continu-
ous probability distributions and Askey scheme of continuous
hyper-geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π

e
−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]

Uniform 1
2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (1 − x)α(1 + x)β [−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Gen. Laguerre L
(α)
n (x) xαe−x [0,∞]

Note that Legendre is a special case of Jacobi for α = β = 0, Laguerre is a special
case of generalized Laguerre for α = 0, Γ(a) is the Gamma function which extends
the factorial function to continuous values, and B(a, b) is the Beta function defined

as B(a, b) = Γ(a)Γ(b)
Γ(a+b)

. Some care is necessary when specifying the α and β parameters
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for the Jacobi and generalized Laguerre polynomials since the orthogonal polynomial
conventions [1] differ from the common statistical PDF conventions. The former
conventions are used in Table 3.1.

3.1.2 Numerically generated orthogonal polynomials

If all random inputs can be described using independent normal, uniform, exponential,
beta, and gamma distributions, then generalized PCE can be directly applied. If
correlation or other distribution types are present, then additional techniques are
required. One solution is to employ nonlinear variable transformations as described
in Section 3.2.3 such that an Askey basis can be applied in the transformed space.
This can be effective as shown in [15], but convergence rates are typically degraded. In
addition, correlation coefficients are warped by the nonlinear transformation [7], and
transformed correlation values are not always readily available. An alternative is to
numerically generate the orthogonal polynomials, along with their Gauss points and
weights, that are optimal for given random variable sets having arbitrary probability
density functions [18, 22]. This preserves the exponential convergence rates for UQ
applications with general probabilistic inputs, but performing this process for general
joint density functions with correlation is a topic on ongoing research.

Figure 3.1 demonstrates the use of a numerically-generated basis for Rosenbrock’s
function, a simple fourth-order polynomial. For two lognormal random variable inputs
(iid with mean = 1. and standard deviation = 0.5), we employ two basis selections:
(1) PCE and SC employ a Hermite basis in a transformed standard normal space
(blue curves), (2) polynomials that are orthogonal with respect to these lognormal
PDFs are numerically generated (red curves). It is evident that exact results are
obtained with a fourth-order expansion for the numerically-generated case, whereas
the nonlinear variable transformation introduces additional nonlinearity that requires
a much higher order expansion to accurately resolve. However, it is not always the
case that a variable transformation increases the degree of nonlinearity; for the two
rational functions presented in Chapter 4, this trend is reversed.

3.1.3 Interpolation polynomials

Lagrange polynomials interpolate a set of points in a single dimension using the
functional form

Lj =
m
∏

k=1
k 6=j

ξ − ξk

ξj − ξk
(3.1)

where it is evident that Lj is 1 at ξ = ξj, is 0 for each of the points ξ = ξk, and has
order m− 1.
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Figure 3.1. PCE and SC comparing Askey and
numerically-generated basis for the Rosenbrock test problem
with two lognormal variables.

For interpolation of a response function R in one dimension over m points, the ex-
pression

R(ξ) ∼=

m
∑

j=1

r(ξj)Lj(ξ) (3.2)

reproduces the response values r(ξj) at the interpolation points and smoothly interpo-
lates between these values at other points. For interpolation in multiple dimensions,
a tensor-product approach is used wherein

R(ξ) ∼=

mi1
∑

j1=1

· · ·

min
∑

jn=1

r
(

ξi1j1 , . . . , ξ
in
jn

) (

Li1j1 ⊗ · · · ⊗ Linjn
)

=

Np
∑

j=1

rj(ξ)Lj(ξ) (3.3)

where i = (m1,m2, · · · ,mn) are the number of nodes used in the n-dimensional
interpolation and ξikjl is the jl-th point in the k-th direction. As will be seen later
(Section 3.3.1.3), interpolation on sparse grids involves a summation of these tensor
products with varying i levels.

3.2 Stochastic Expansion Methods

3.2.1 Generalized Polynomial Chaos

The set of polynomials from Sections 3.1.1 and 3.1.2 are used as an orthogonal basis
to approximate the functional form between the stochastic response output and each
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of its random inputs. The chaos expansion for a response R takes the form

R = a0B0+
∞

∑

i1=1

ai1B1(ξi1)+
∞

∑

i1=1

i1
∑

i2=1

ai1i2B2(ξi1 , ξi2)+
∞

∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3)+...

(3.4)
where the random vector dimension is unbounded and each additional set of nested
summations indicates an additional order of polynomials in the expansion. This
expression can be simplified by replacing the order-based indexing with a term-based
indexing

R =
∞

∑

j=0

αjΨj(ξ) (3.5)

where there is a one-to-one correspondence between ai1i2...in and αj and between
Bn(ξi1 , ξi2 , ..., ξin) and Ψj(ξ). Each of the Ψj(ξ) are multivariate polynomials which
involve products of the one-dimensional polynomials. For example, a multivariate
Hermite polynomial B(ξ) of order n is defined from

Bn(ξi1 , ..., ξin) = e
1
2
ξT ξ(−1)n

∂n

∂ξi1 ...∂ξin
e−

1
2
ξT ξ (3.6)

which can be shown to be a product of one-dimensional Hermite polynomials involving
a multi-index mj

i :

Bn(ξi1 , ..., ξin) = Ψj(ξ) =
n

∏

i=1

ψ
m

j
i
(ξi) (3.7)

3.2.1.1 Expansion truncation and tailoring

In practice, one truncates the infinite expansion at a finite number of random variables
and a finite expansion order

R ∼=

P
∑

j=0

αjΨj(ξ) (3.8)

Traditionally, the polynomial chaos expansion includes a complete basis of polynomi-
als up to a fixed total-order specification. For example, the multidimensional basis
polynomials for a second-order expansion over two random dimensions are

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ2
1 − 1

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ2
2 − 1
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The total number of terms Nt in an expansion of total order p involving n random
variables is given by

Nt = 1 + P = 1 +

p
∑

s=1

1

s!

s−1
∏

r=0

(n+ r) =
(n+ p)!

n!p!
(3.9)

This traditional approach will be referred to as a “total-order expansion.”

An important alternative approach is to employ a “tensor-product expansion,” in
which polynomial order bounds are applied on a per-dimension basis (no total-order
bound is enforced) and all combinations of the one-dimensional polynomials are in-
cluded. In this case, the example basis for p = 2, n = 2 is

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ2
1 − 1

Ψ3(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ2(ξ1) ψ1(ξ2) = (ξ2
1 − 1)ξ2

Ψ6(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ2
2 − 1

Ψ7(ξ) = ψ1(ξ1) ψ2(ξ2) = ξ1(ξ
2
2 − 1)

Ψ8(ξ) = ψ2(ξ1) ψ2(ξ2) = (ξ2
1 − 1)(ξ2

2 − 1)

and the total number of terms Nt is

Nt = 1 + P =
n

∏

i=1

(pi + 1) (3.10)

where pi is the polynomial order bound for the i-th dimension.

It is apparent from Eq. 3.10 that the tensor-product expansion readily supports
anisotropy in polynomial order for each dimension, since the polynomial order bounds
for each dimension can be specified independently. It is also feasible to support
anisotropy with total-order expansions, although this involves pruning polynomials
that satisfy the total-order bound (potentially defined from the maximum of the per-
dimension bounds) but which violate individual per-dimension bounds. In this case,
Eq. 3.9 does not apply.

Additional expansion form alternatives can also be considered. Of particular interest
is the tailoring of expansion form to target specific monomial coverage as motivated
by the integration process employed for evaluating chaos coefficients. If the specific
monomial set that can be resolved by a particular integration approach is known or
can be approximated, then the chaos expansion can be tailored to synchonize with
this set. Tensor-product and total-order expansions can be seen as special cases of this
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general approach (corresponding to tensor-product quadrature and Smolyak sparse
grids with linear growth rules, respectively), whereas, for example, Smolyak sparse
grids with nonlinear growth rules could generate synchonized expansion forms that
are neither tensor-product nor total-order (to be discussed later in association with
Figure 3.4). In all cases, the specifics of the expansion are codified in the multi-index,
and subsequent machinery for estimating response values at particular ξ, evaluating
response statistics by integrating over ξ, etc., can be performed in a manner that is
agnostic to the exact expansion formulation.

3.2.1.2 Dimension independence

A generalized polynomial basis is generated by selecting the univariate basis that is
most optimal for each random input and then applying the products as defined by the
multi-index to define a mixed set of multivariate polynomials. Similarly, multivariate
weighting functions involve a product of the one-dimensional weighting functions
and multivariate quadrature rules involve tensor products of the one-dimensional
quadrature rules.

The use of independent standard random variables is the critical component that
allows decoupling of the multidimensional integrals in a mixed basis expansion. It is
assumed in this work that the uncorrelated standard random variables resulting from
the transformation described in Section 3.2.3 can be treated as independent. This
assumption is valid for uncorrelated standard normal variables (which motivates an
approach of using a strictly Hermite basis for problems with correlated inputs), but
could introduce significant error for other uncorrelated random variable types. For
independent variables, the multidimensional integrals involved in the inner products of
multivariate polynomials decouple to a product of one-dimensional integrals involving
only the particular polynomial basis and corresponding weight function selected for
each random dimension. The multidimensional inner products are nonzero only if
each of the one-dimensional inner products is nonzero, which preserves the desired
multivariate orthogonality properties for the case of a mixed basis.

3.2.2 Stochastic Collocation

The SC expansion is formed as a sum of a set of multidimensional Lagrange inter-
polation polynomials, one polynomial per collocation point. Since these polynomials
have the feature of being equal to 1 at their particular collocation point and 0 at all
other points, the coefficients of the expansion are just the response values at each of
the collocation points. This can be written as:

R ∼=

Np
∑

j=1

rjLj(ξ) (3.11)
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where the set of Np collocation points involves a structured multidimensional grid.
There is no need for tailoring of the expansion form as there is for PCE (see Sec-
tion 3.2.1.1) since the polynomials that appear in the expansion are determined by
the Lagrange construction (Eq. 3.1). That is, any tailoring or refinement of the
expansion occurs through the selection of points in the interpolation grid and the
polynomial orders of the basis adapt automatically.

As mentioned in Section 1.1, the key to maximizing performance with this approach
is to use the same Gauss points defined from the optimal orthogonal polynomials as
the collocation points (using either a tensor product grid as shown in Eq. 3.3 or a
sum of tensor products defined for a sparse grid as shown later in Section 3.3.1.3).
Given the observation that Gauss points of an orthogonal polynomial are its roots,
one can factor a one-dimensional orthogonal polynomial of order p as follows:

ψj = cj

p
∏

k=1

(ξ − ξk) (3.12)

where ξk represent the roots. This factorization is very similar to Lagrange inter-
polation using Gauss points as shown in Eq. 3.1. However, to obtain a Lagrange
interpolant of order p from Eq. 3.1 for each of the collocation points, one must use
the roots of a polynomial that is one order higher (order p+ 1) and then exclude the
Gauss point being interpolated. As discussed later in Section 3.3.1.2, one also uses
these higher order p + 1 roots to evaluate the PCE coefficient integrals for expan-
sions of order p. Thus, the collocation points used for integration or interpolation for
expansions of order p are the same; however, the polynomial bases for PCE (scaled
polynomial product involving all p roots of order p) and SC (scaled polynomial prod-
uct involving p root subset of order p+ 1) are closely related but not identical.

3.2.3 Transformations to uncorrelated standard variables

Polynomial chaos and stochastic collocation are expanded using polynomials that are
functions of independent standard random variables ξ. Thus, a key component of
either approach is performing a transformation of variables from the original ran-
dom variables x to independent standard random variables ξ and then applying the
stochastic expansion in the transformed space. The dimension of ξ is typically chosen
to correspond to the dimension of x, although this is not required. In fact, the dimen-
sion of ξ should be chosen to represent the number of distinct sources of randomness
in a particular problem, and if individual xi mask multiple random inputs, then the
dimension of ξ can be expanded to accommodate [20]. For simplicity, all subsequent
discussion will assume a one-to-one correspondence between ξ and x.

This notion of independent standard space is extended over the notion of “u-space”
used in reliability methods [10, 11] in that in includes not just independent standard
normals, but also independent standardized uniforms, exponentials, betas and gam-
mas. For problems directly involving independent normal, uniform, exponential, beta,
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and gamma distributions for input random variables, conversion to standard form in-
volves a simple linear scaling transformation (to the form of the density functions in
Table 3.1) and then the corresponding chaos/collocation points can be employed. For
other independent distributions, one has a choice of two different approaches:

1. Numerically generate an optimal polynomial basis for each independent distri-
bution (using Gauss-Wigert [39], discretized Stieltjes [18], Chebyshev [18], or
Gramm-Schmidt [51] approaches) and employ Golub-Welsch [22] to compute
the corresponding Gauss points and weights.

2. Perform a nonlinear variable transformation from a given input distribution to
the most similar Askey basis and employ the Askey orthogonal polynomials
and associated Gauss points/weights. For example, lognormal might employ a
Hermite basis in a transformed standard normal space and loguniform, triangu-
lar, and bin-based hisotgrams might employ a Legendre basis in a transformed
standard uniform space.

For correlated non-normal distributions, a third approach is currently the only ac-
ceptable option (although other options are an active research area):

3. Perform a nonlinear variable transformation from all given input distributions
to uncorrelated standard normal distributions and employ strictly Hermite or-
thogonal polynomial bases and associated Gauss points/weights.

This third approach is performed using the Nataf transformation, which is described
in more detail below.

3.2.3.1 Nataf transformation

The transformation from correlated non-normal distributions to uncorrelated stan-
dard normal distributions is denoted as ξ = T (x) with the reverse transformation
denoted as x = T−1(ξ). These transformations are nonlinear in general, and possi-
ble approaches include the Rosenblatt [37], Nataf [7], and Box-Cox [5] transforma-
tions. The nonlinear transformations may also be linearized, and common approaches
for this include the Rackwitz-Fiessler [35] two-parameter equivalent normal and the
Chen-Lind [6] and Wu-Wirsching [53] three-parameter equivalent normals. The re-
sults in this report employ the Nataf nonlinear transformation, which is suitable for
the common case when marginal distributions and a correlation matrix are provided,
but full joint distributions are not known1. The Nataf transformation occurs in the
following two steps. To transform between the original correlated x-space variables

1If joint distributions are known, then the Rosenblatt transformation is preferred.
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and correlated standard normals (“z-space”), a CDF matching condition is applied
for each of the marginal distributions:

Φ(zi) = F (xi) (3.13)

where Φ() is the standard normal cumulative distribution function and F () is the
cumulative distribution function of the original probability distribution. Then, to
transform between correlated z-space variables and uncorrelated ξ-space variables,
the Cholesky factor L of a modified correlation matrix is used:

z = Lξ (3.14)

where the original correlation matrix for non-normals in x-space has been modified
to represent the corresponding “warped” correlation in z-space [7].

3.3 Non-intrusive methods for expansion forma-

tion

The major practical difference between PCE and SC is that, in PCE, one must es-
timate the coefficients for known basis functions, whereas in SC, one must form
the interpolants for known coefficients. PCE estimates its coefficients using any of
the approaches to follow: random sampling, tensor-product quadrature, Smolyak
sparse grids, or linear regression. In SC, the multidimensional interpolants need to
be formed over structured data sets, such as point sets from quadrature or sparse
grids; approaches based on random sampling may not be used.

3.3.1 Spectral projection

The spectral projection approach projects the response against each basis function
using inner products and employs the polynomial orthogonality properties to extract
each coefficient. Similar to a Galerkin projection, the residual error from the ap-
proximation is rendered orthogonal to the selected basis. From Eq. 3.8, it is evident
that

αj =
〈R,Ψj〉

〈Ψ2
j〉

=
1

〈Ψ2
j〉

∫

Ω

RΨj ̺(ξ) dξ, (3.15)

where each inner product involves a multidimensional integral over the support range
of the weighting function. In particular, Ω = Ω1 ⊗· · ·⊗Ωn, with possibly unbounded
intervals Ωj ⊂ R and the tensor product form ̺(ξ) =

∏n

i=1 ̺i(ξi) of the joint prob-
ability density (weight) function. The denominator in Eq. 3.15 is the norm squared
of the multivariate orthogonal polynomial, which can be computed analytically using
the product of univariate norms squared

〈Ψ2
j〉 =

n
∏

i=1

〈ψ2
m

j
i

〉 (3.16)
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where the univariate inner products have simple closed form expressions for each
polynomial in the Askey scheme [1]. Thus, the primary computational effort resides in
evaluating the numerator, which is evaluated numerically using sampling, quadrature
or sparse grid approaches (and this numerical approximation leads to use of the term
“pseudo-spectral” by some investigators).

3.3.1.1 Sampling

In the sampling approach, the integral evaluation is equivalent to computing the
expectation (mean) of the response-basis function product (the numerator in Eq. 3.15)
for each term in the expansion when sampling within the density of the weighting
function. This approach is only valid for PCE and since sampling does not provide
any particular monomial coverage guarantee, it is common to combine this coefficient
estimation approach with a total-order chaos expansion.

In computational practice, coefficient estimations based on sampling benefit from first
estimating the response mean (the first PCE coefficient) and then removing the mean
from the expectation evaluations for all subsequent coefficients [20]. While this has
no effect for quadrature/sparse grid methods (see following two sections) and little
effect for fully-resolved sampling, it does have a small but noticeable beneficial effect
for under-resolved sampling.

3.3.1.2 Tensor product quadrature

In quadrature-based approaches, the simplest general technique for approximating
multidimensional integrals, as in Eq. 3.15, is to employ a tensor product of one-
dimensional quadrature rules. In the case where Ω is a hypercube, i.e. Ω = [−1, 1]n,
there are several choices of nested abscissas, included Clenshaw-Curtis, Gauss-Patterson,
etc. [34, 33, 19]. However, in the tensor-product case, we choose Gaussian abscissas,
i.e. the zeros of polynomials that are orthogonal with respect to a density function
weighting, e.g. Gauss-Hermite, Gauss-Legendre, Gauss-Laguerre, generalized Gauss-
Laguerre, and Gauss-Jacobi.

We first introduce an index i ∈ N+, i ≥ 1. Then, for each value of i, let {ξi1, . . . , ξ
i
mi
} ⊂

Ωi be a sequence of abscissas for quadrature on Ωi. For f ∈ C0(Ωi) and n = 1 we
introduce a sequence of one-dimensional quadrature operators

U
i(f)(ξ) =

mi
∑

j=1

f(ξij)w
i
j, (3.17)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. 3.17 integrates exactly
all polynomials of degree less than or equal to 2mi−1, for each i = 1, . . . , n. Given an
expansion order p, the highest order coefficient evaluations (Eq. 3.15) can be assumed
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to involve integrands of at least polynomial order 2p (Ψ of order p and R modeled to
order p) in each dimension such that a minimal Gaussian quadrature order of p + 1
will be required to obtain good accuracy in these coefficients.

Now, in the multivariate case n > 1, for each f ∈ C0(Ω) and the multi-index i =
(i1, . . . , in) ∈ N

n
+ we define the full tensor product quadrature formulas

Qn
i
f(ξ) =

(

U
i1 ⊗ · · · ⊗ U

in
)

(f)(ξ) =

mi1
∑

j1=1

· · ·

min
∑

jn=1

f
(

ξi1j1 , . . . , ξ
in
jn

) (

wi1j1 ⊗ · · · ⊗ winjn
)

.

(3.18)
Clearly, the above product needs

∏n

j=1mij function evaluations. Therefore, when the
number of input random variables is small, full tensor-product quadrature is a very
effective numerical tool. On the other hand, approximations based on tensor-product
grids suffer from the curse of dimensionality since the number of collocation points
in a tensor grid grows exponentially fast in the number of input random variables.
For example, if Eq. 3.18 employs the same order for all random dimensions, mij = m,
then Eq. 3.18 requires mn function evaluations.

Figure 3.2 displays the monomial coverage for an integrand evaluated using an isotropic
Gaussian quadrature rules in two dimensions (m1 = m2 = 5). Given this type of cov-
erage, the traditional approach of exploying a total-order chaos expansion (involving
integrands indicated by the red horizontal line) neglects a significant portion of the
monomial coverage and one would expect a tensor-product expansion to provide im-
proved synchronization and more effective usage of the Gauss point evaluations. Note
that the integrand monomial coverage must resolve 2p, such that p1 = p2 = 4 would
be selected in this case.

3.3.1.3 Smolyak sparse grids

If the number of random variables is moderately large, one should rather consider
sparse tensor product spaces as first proposed by Smolyak [40] and further investigated
by [19, 3, 16, 54, 34, 33] that reduce dramatically the number of collocation points,
while preserving a high level of accuracy.

Here we follow the notation and extend the description in [34] to describe the Smolyak
isotropic formulas A(w, n), where w is a level that is independent of dimension2. The
Smolyak formulas are just linear combinations of the product formulas in Eq. 3.18
with the following key property: only products with a relatively small number of
points are used. With U

0 = 0 and for i ≥ 1 define

∆i = U
i − U

i−1. (3.19)

2Other common formulations use a dimension-dependent level q where q ≥ n. We use w = q−n,
where w ≥ 0 for all n.
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Figure 3.2. Pascal’s triangle depiction of integrand
monomial coverage for two dimensions and Gaussian tensor-
product quadrature order = 5. Red line depicts maximal
total-order integrand coverage.

and we set |i| = i1 + · · ·+ in. Then the isotropic Smolyak quadrature formula is given
by

A(w, n) =
∑

|i|≤w+n

(

∆i1 ⊗ · · · ⊗ ∆in
)

. (3.20)

Equivalently, formula Eq. 3.20 can be written as [49]

A(w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|
(

n− 1

w + n− |i|

)

·
(

U
i1 ⊗ · · · ⊗ U

in
)

. (3.21)

Given an index set of levels, linear or nonlinear growth rules may be defined for the
one-dimensional quadrature orders in order to take advantage of nesting of collocation
points. The following growth rules are currently available for indices i ≥ 1:

Clenshaw − Curtis : m =

{

1 i = 1
2i−1 + 1 i > 1

(3.22)

Gaussian nonlinear : m = 2i − 1 (3.23)

Gaussian linear : m = 2i− 1 (3.24)

For fully nested quadrature rules such as Clenshaw-Curtis and Gauss-Patterson, non-
linear growth rules are strongly preferred (Eq. 3.22 for the former and Eq. 3.23 for
the latter). For at most weakly nested Gaussian quadrature rules, either linear or
nonlinear rules may be selected, with the former motivated by finer granularity of
control and uniform integrand coverage and the latter motivated by consistency with
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Clenshaw-Curtis and Gauss-Patterson. The m = 2i − 1 linear rule takes advantage
of weak nesting (e.g., Gauss-Hermite and Gauss-Legendre), whereas non-nested rules
(e.g., Gauss-Laguerre) could alternatively employ an m = i linear rule without any
loss of reuse. In the experiments to follow, Clenshaw-Curtis employs nonlinear growth
via Eq. 3.22, and all Gaussian rules employ either nonlinear growth from Eq. 3.23 or
linear growth from Eq. 3.24.

Examples of isotropic sparse grids, constructed from the fully nested Clenshaw-Curtis
abscissas and the weakly-nested Gaussian abscissas are shown in Figure 3.3, where
Ω = [−1, 1]2. There, we consider a two-dimensional parameter space and a maxi-
mum level w = 5 (sparse grid A(5, 2)). To see the reduction in function evaluations
with respect to full tensor product grids, we also include a plot of the corresponding
Clenshaw-Curtis isotropic full tensor grid having the same maximum number of points
in each direction, namely 25 + 1 = 33. Whereas an isotropic tensor-product quadra-
ture scales as mn, an isotropic sparse grid scales as mlog n, significantly mitigating
the curse of dimensionality.

Figure 3.3. For a two-dimensional parameter space (n = 2)
and maximum level w = 5, we plot the full tensor product
grid using the Clenshaw-Curtis abscissas (left) and isotropic
Smolyak sparse grids A(5, 2), utilizing the Clenshaw-Curtis
abscissas (middle) and the Gaussian abscissas (right).

Figure 3.4 displays the monomial coverage in Pascal’s triangle for an isotropic sparse
grid with level w = 4 employing Gaussian integration rules in two dimensions. Given
this geometric interpretation, subtracted tensor-product grids from Eqs. 3.20 and
3.21 can be interpreted as regions of overlap where only a single contribution to
the integral should be retained. Figure 3.4(a) shows the case of nonlinear growth
rules as given in Eq. 3.23 and Figure 3.4(b) shows the linear growth rule given in
Eq. 3.24. Given this type of coverage, the traditional approach of exploying a total-
order chaos expansion (maximal resolvable total-order integrand depicted with red
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horizontal line) can be seen to be well synchronized for the case of linear growth rules,
since only a few small “teeth” protrude beyond the maximal total-order basis, and to
be somewhat conservative for nonlinear growth rules, since the maximal total-order
basis is dictated by the concave interior and neglects the outer “legs.” However, the
inclusion of additional terms beyond the total-order basis in the nonlinear growth
rule case, as motivated by the legs in Figure 3.4(a), is error-prone, since the order
of the unknown response function will tend to push the product integrand out into
the concave interior, resulting in product polynomials that are not resolvable by the
sparse integration. For the total-order basis, the integrand monomial coverage must
resolve 2p, such that p = 9 would be selected in the nonlinear growth rule case and
p = 7 would be selected in the linear growth rule case.

61yx

x y529

x13y13

x5y29

xy61

19

(a) Nonlinear growth rule.

x13y5 x5y13x9y9 xy17x17y

15

(b) Linear growth rule.

Figure 3.4. Pascal’s triangle depiction of integrand mono-
mial coverage for two dimensions and Gaussian sparse grid
level = 4. Red line depicts maximal total-order integrand
coverage.

3.3.2 Linear regression

The linear regression approach (also known as point collocation or stochastic response
surfaces [48, 26]) uses a single linear least squares solution of the form:

Ψα = R (3.25)

to solve for the complete set of PCE coefficients α that best match a set of response
values R. The set of response values is typically obtained by performing a design
of computer experiments within the density function of ξ, where each row of the
matrix Ψ contains the Nt multivariate polynomial terms Ψj evaluated at a particular
ξ sample. An over-sampling is generally advisable ([26] recommends 2Nt samples),
resulting in a least squares solution for the over-determined system. In the case
of 2Nt oversampling, the simulation requirements for this approach scale as 2(n+p)!

n!p!
,
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which can be significantly more affordable than isotropic tensor-product quadrature
(e.g., (p + 1)n) for larger problems. As for sampling-based coefficient estimation,
this approach is only valid for PCE and does not provide any particular monomial
coverage guarantee; thus it is common to combine this coefficient estimation approach
with a total-order chaos expansion.

A closely related technique is known as the “probabilistic collocation” approach.
Rather than employing random over-sampling, this technique uses a selected subset of
Nt Gaussian quadrature points (those with highest tensor-product weighting), which
provides more optimal collocation locations and preserves interpolation properties.

Finally, additional regression equations can be obtained through the use of derivative
information (gradients and Hessians) from each collocation point, which aids greatly
in scaling with respect to the number of random variables.

3.4 Nonprobabilistic Extensions to Stochastic Ex-

pansions

Stochastic expansion methods have a number of convenient analytic features that
make them attractive for use within higher level analyses, such as local and global
sensitivity analysis, mixed aleatory/epistemic uncertainty quantification, and design
under uncertainty algorithms. First, moments of the response expansion are available
analytically. Second, the response expansions are readily differentiated with respect
to the underlying expansion variables, and response moment expressions may addi-
tionally be differentiated with respect to auxilliary nonprobabilistic variables.

3.4.1 Analytic moments

Mean and variance of the polynomial chaos expansion are available in simple closed
form:

µR = 〈R〉 ∼=

P
∑

j=0

αj〈Ψj(ξ)〉 = α0 (3.26)

σ2
R = 〈(R− µR)2〉 ∼= 〈(

P
∑

j=1

αjΨj(ξ))2〉 =
P

∑

j=1

P
∑

k=1

αjαk〈Ψj(ξ)Ψk(ξ)〉

=
P

∑

j=1

α2
j〈Ψ

2
j〉 (3.27)
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where the norm squared of each multivariate polynomial is computed from Eq. 3.16.
The moments µR and σR are exact moments of the expansion, which converge to
moments of the true response function. Higher moments are also available analytically
and could be employed in moment fitting approaches (i.e., Pearson and Johnson
models) in order to approximate a response PDF, although this is outside the scope
of the current work.

Similar expressions can be derived for stochastic collocation:

µR = 〈R〉 ∼=

Np
∑

j=1

rj〈Lj(ξ)〉 =

Np
∑

j=1

rjwj (3.28)

σ2
R = 〈R2〉 − µ2

R
∼=

Np
∑

j=1

Np
∑

k=1

rjrk〈Lj(ξ)Lk(ξ)〉 − µ2
R

=

Np
∑

j=1

r2
jwj − µ2

R (3.29)

where the expectation of a particular Lagrange polynomial constructed at Gauss
points and then integrated at these same Gauss points leaves only the weight corre-
sponding to the point for which the interpolation value is one.

3.4.2 Stochastic Sensitivity Analysis

3.4.2.1 Global sensitivity analysis: interpretation of PCE coefficients

In the case of PCE, the chaos coefficients provide information on the global sensi-
tivity of the response with respect to the expansion variables. As described in [42],
variance-based decomposition (VBD) has much in common with expansions based on
orthogonal polynomial bases, and it is straighforward to analytically compute Sobol’
sensitivity indices from the set of PCE coefficients as a post-processing step. This
allows an assessment of which expansion variables are most influential in contribut-
ing to the output uncertainty. Recent work [46] has extended this to SC expansions
and demonstrated improved performance of PCE/SC sensitivity analysis approaches
relative to VBD using sampling methods.
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3.4.2.2 Local sensitivity analysis: derivatives with respect to expansion

variables

Polynomial chaos expansions are easily differentiated with respect to the random
variables [36]. First, using Eq. 3.8,

dR

dξi
∼=

P
∑

j=0

αj
dΨj(ξ)

dξi
(3.30)

and then using Eq. 3.7,

dΨj(ξ)

dξi
=
dψi

dξi

n
∏

k=1
k 6=i

ψ
m

j
k
(ξk) (3.31)

where the univariate polynomial derivatives dψi

dξi
have simple closed form expressions

for each polynomial in the Askey scheme [1]. Finally, using the Jacobian of the Nataf
variable transformation,

dR

dxi
=
dR

dξ

dξ

dxi
(3.32)

which simplifies to dR
dξi

dξi
dxi

in the case of uncorrelated xi.

Similar expressions may be derived for stochastic collocation, starting from Eq. 3.11:

dR

dξi
=

Np
∑

j=1

rj
dLj(ξ)

dξi
(3.33)

where the multidimensional interpolant Lj is formed over either tensor-product quadra-
ture points or a Smolyak sparse grid. For the former case, the derivative of the multi-
dimensional interpolant Lj involves a product rule of the one-dimensional interpolants
Lk:

dLj(ξ)

dξi
=
dLi

dξi

n
∏

k=1
k 6=i

Lk(ξk) (3.34)

and for the latter case, the derivative involves a linear combination of these product
rules, as dictated by the Smolyak recursion shown in Eq. 3.21. Finally, calculation of
dR
dxi

involves the same Jacobian application shown in Eq. 3.32.

3.4.2.3 Local sensitivity analysis: derivatives of probabilistic expansions

with respect to nonprobabilistic variables

With the introduction of nonprobabilistic variables s (for example, design variables
or epistemic uncertain variables), a polynomial chaos expansion only over the random
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variables ξ has the functional relationship:

R(ξ, s) ∼=

P
∑

j=0

αj(s)Ψj(ξ) (3.35)

In this case, sensitivities of the mean and variance in Eqs. 3.26 and 3.27 with respect
to the nonprobabilistic variables are as follows:

dµR

ds
=

dα0

ds
=

d

ds
〈R〉 = 〈

dR

ds
〉 (3.36)

dσ2
R

ds
=

P
∑

j=1

〈Ψ2
j〉
dα2

j

ds
= 2

P
∑

j=1

αj〈
dR

ds
,Ψj〉 (3.37)

since
dαj

ds
=

〈dR
ds
,Ψj〉

〈Ψ2
j〉

(3.38)

The coefficients calculated in Eq. 3.38 may be interpreted as either the nonproba-
bilistic sensitivities of the chaos coefficients for the response expansion or the chaos
coefficients of an expansion for the nonprobabilistic sensitivities of the response. The
evaluation of integrals involving dR

ds
extends the data requirements for the PCE ap-

proach to include response sensitivities at each of the sampling points for the quadra-
ture, sparse grid, sampling, or point collocation coefficient estimation approaches.
The resulting expansions are valid only for a particular set of nonprobabilistic vari-
ables and must be recalculated each time the nonprobabilistic variables are modified.

Similarly for stochastic collocation,

R(ξ, s) ∼=

Np
∑

j=1

rj(s)Lj(ξ) (3.39)

leads to

dµR

ds
=

d

ds
〈R〉 =

Np
∑

j=1

drj

ds
〈Lj〉 =

Np
∑

j=1

wj
drj

ds
(3.40)

dσ2
R

ds
=

Np
∑

j=1

2wjrj
drj

ds
− 2µR

dµR

ds
=

Np
∑

j=1

2wj(rj − µR)
drj

ds
(3.41)

based on differentiation of Eqs. 3.28-3.29.
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3.4.2.4 Local sensitivity analysis: derivatives of combined expansions

with respect to nonprobabilistic variables

Alternatively, a stochastic expansion can be formed over both ξ and s. Assuming
a bounded domain sL ≤ s ≤ sU (with no implied probability content) for the non-
probabilistic variables, a Legendre chaos basis would be appropriate for each of the
dimensions in s within a polynomial chaos expansion.

R(ξ, s) ∼=

P
∑

j=0

αjΨj(ξ, s) (3.42)

In this case, sensitivities for the mean and variance do not require response sensitivity
data, but this comes at the cost of forming the PCE over additional dimensions. For
this combined variable expansion, the mean and variance are evaluated by performing
the expectations over only the probabilistic expansion variables, which eliminates the
polynomial dependence on ξ, leaving behind the desired polynomial dependence of
the moments on s:

µR(s) =
P

∑

j=0

αj〈Ψj(ξ, s)〉ξ (3.43)

σ2
R(s) =

P
∑

j=0

P
∑

k=0

αjαk〈Ψj(ξ, s)Ψk(ξ, s)〉ξ − µ2
R(s) (3.44)

The remaining polynomials may then be differentiated with respect to s. In this
approach, the combined PCE is valid for the full nonprobabilistic variable range
(sL ≤ s ≤ sU) and does not need to be updated for each change in nonprobabilistic
variables, although adaptive localization techniques (i.e., trust region model manage-
ment approaches) can be employed when improved local accuracy of the sensitivities
is required.

Similarly for stochastic collocation,

R(ξ, s) ∼=

Np
∑

j=1

rjLj(ξ, s) (3.45)

leads to

µR(s) =

Np
∑

j=1

rj〈Lj(ξ, s)〉ξ (3.46)

σ2
R(s) =

Np
∑

j=1

Np
∑

k=1

rjrk〈Lj(ξ, s)Lk(ξ, s)〉ξ − µ2
R(s) (3.47)
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where the remaining polynomials not eliminated by the expectation over ξ are again
differentiated with respect to s.

3.4.2.5 Inputs and outputs

There are two types of nonprobabilistic variables for which sensitivities must be calcu-
lated: “augmented,” where the nonprobabilistic variables are separate from and aug-
ment the probabilistic variables, and “inserted,” where the nonprobabilistic variables
define distribution parameters for the probabilistic variables. While one could arti-
ficially augment the dimensionality of a combined variable expansion approach with
inserted nonprobabilistic variables, this is not currently explored in this work. Thus,
any inserted nonprobabilistic variable sensitivities must be handled using Eqs. 3.36-
3.37 and Eqs. 3.40-3.41 where dR

ds
is calculated as dR

dx
dx
ds

and dx
ds

is the Jacobian of
the variable transformation x = T−1(ξ) with respect to the inserted nonprobabilistic
variables.

While moment sensitivities directly enable robust design optimization formulations
which seek to control response variance, design for reliability requires design sensitiv-
ities of tail statistics. In this work, we initially focus on design sensitivity of simple
moment projections for this purpose. In reliability analysis using the Mean Value
method, forward (z̄ → β) and inverse (β̄ → z) mappings employing the reliability
index are approximated as [10, 11]:

βcdf =
µR − z̄

σR
(3.48)

βccdf =
z̄ − µR

σR
(3.49)

z = µR − σRβ̄cdf (3.50)

z = µR + σRβ̄ccdf (3.51)

such that it is straightforward to form approximate design sensitivities of β and z

from the PCE moment sensitivities. From here, approximate design sensitivities of
probability levels may also be formed given a probability expression (such as Φ(−β))
for the reliability index. The current alternative of numerical design sensitivities of
sampled probability levels would employ fewer simplifying approximations, but would
also be much more expensive to compute accurately and is avoided for now. Future
capabilities for analytic probability sensitivities could be based on Pearson/Johnson
model for analytic response PDFs or sampling sensitivity approaches.

48



Chapter 4

Analytic Benchmarks and Results

Capabilities for uncertainty analysis based on stochastic expansions and optimization-
based interval estimation have been implemented in DAKOTA [9], an open-source
software framework for design and performance analysis of computational models on
high performance computers. This section examines computational performance of
these algorithmic approaches for several algebraic benchmark test problems. These
results build upon PCE results for UQ presented in [15], comparisons of PCE and
SC results for UQ presented in [12], PCE-based and SC-based optimization under
uncertainty (OUU) results presented in [14], and OUU and interval estimation results
presented in [8].

4.1 Short column

This test problem involves the plastic analysis of a short column with rectangular
cross section (width b = 5 and depth h = 15) having uncertain material properties
(yield stress Y ) and subject to uncertain loads (bending moment M and axial force
P ) [29]. The limit state function is defined as:

g(x) = 1 −
4M

bh2Y
−

P 2

b2h2Y 2
(4.1)

The distributions for P , M , and Y are Normal(500, 100), Normal(2000, 400), and
Lognormal(5, 0.5), respectively, with a correlation coefficient of 0.5 between P and
M (uncorrelated otherwise). For P and M , a linear variable transformation is ap-
plied and Hermite orthogonal polynomials are employed in the transformed standard
normal space. For Y , two polynomial approximation approaches are employed: (1) a
nonlinear variable transformation is applied and Hermite orthogonal polynomials are
employed in the transformed standard normal space, or (2) Gauss-Wigert orthogonal
polynomials are numerically generated.
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4.1.1 Uncertainty quantification with PCE and SC

Figure 4.1 shows convergence of the mean and standard deviation of the limit state
function for increasing tensor-product quadrature orders, sparse grid levels using lin-
ear growth, and sparse grid levels using nonlinear growth for tailored PCE (synchro-
nized tensor-product and total-order expansions as shown in Figures 3.2 and 3.4),
traditional PCE (total-order expansions based on heuristics), and SC. Since an ana-
lytic solution is not available, residuals are measured relative to an “overkill” solution.
The quality of this overkill solution and the effect of compounded round-off errors can
be seen to hinder the convergence trajectories at residual values below 10−10 (short
of double precision machine epsilon).

In Figure 4.1(a), the only discernible differences appear among the set of tensor-
product quadrature (TPQ) results, the set of linear growth Smolyak sparse grids
(SSG) results, and the set of nonlinear growth SSG results, with similar performance
among the three sets. In Figures 4.1(b,c), however, significant differences are ev-
ident. First, for TPQ (Figure 4.1(b)), tensor-product PCE (tailored) is shown to
completely eliminate the performance gap between total-order PCE (traditional) and
SC. For SSG with nonlinear growth rules (Figure 4.1(c), blue lines), the heuristic
total-order PCE approach (traditional) is shown to be nonconservative in its esti-
mation of the order of expansion to employ. Through inclusion of monomials that
exceed the order of what can be resolved, the expansion standard deviation fails to
converge. The synchronized total-order PCE approach (tailored) is shown to be much
more rigorous for nonlinear growth, although its performance falls well short of that
of SC with nonlinear growth. Without this rigorous estimation, however, one would
be left with the undesirable alternative of trial and error in synchronizing a nonlinear
SSG with a PCE expansion order. For SSG with linear growth rules (Figure 4.1(c),
green lines), improved heuristics are available and the synchronized and heuristic
total-order PCE approaches can be seen to be identical. Thus, in the linear case,
rigorous estimation of the set of nondominated monomials is not required. Further,
while the performance gap with SC remains, its magnitude has been reduced relative
to the gap in the nonlinear SSG case. Whereas TPQ outperforms linear/nonlinear
SSG for two-dimensional problems shown in [12] (such that the equivalent tailored
PCE and SC TPQ approaches performed the best), this trend has started to re-
verse with the increase to three dimensions and SC with linear SSG stands alone
as the most rapidly converging technique. Finally, numerically-generated polynomial
bases (Gauss-Wigert for the lognormal variable) can be seen to converge more slowly
than Askey bases applied in the transformed space. This trend is fairly consistent
for rational functions with lognormals in the denominator, indicating that the vari-
able transformations reduce the overall nonlinearity (presumably from increasing the
polynomial order of the denominator) in this case.
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Figure 4.1. Convergence of mean and standard deviation
for the short column test problem.
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Table 4.1. PCE-based and SC-based interval estimation
results, short column test problem.

Interv Est UQ Expansion Evaluations
Approach Approach Variables (Fn, Grad) Area β

EGO PCE SSG w = 1 Aleatory (84/91, 0/0) [75.0002, 374.999] [-2.27098, 11.8828]
EGO PCE SSG w = 2 Aleatory (372/403, 0/0) [75.0002, 374.999] [-2.18824, 11.5924]
EGO PCE SSG w = 3 Aleatory (1260/1365, 0/0) [75.0002, 374.999] [-2.18732, 11.5900]
EGO PCE SSG w = 4 Aleatory (3564/3861, 0/0) [75.0002, 374.999] [-2.18732, 11.5900]
EGO PCE PC p = 1 Aleatory (96/104, 0/0) [75.0002, 374.999] [-2.48326, 12.3899]
EGO PCE PC p = 2 Aleatory (240/260, 0/0) [75.0002, 374.999] [-2.18786, 11.6106]
EGO PCE PC p = 3 Aleatory (480/520, 0/0) [75.0002, 374.999] [-2.18950, 11.5987]
EGO PCE PC p = 4 Aleatory (840/910, 0/0) [75.0002, 374.999] [-2.18744, 11.5905]
EGO PCE SSG w = 4 Combined (1341/1341, 0/0) [75.0002, 374.999] [-2.31709, 17.6164]
EGO PCE SSG w = 6 Combined (13683/13683, 0/0) [75.0002, 374.999] [-2.18969, 11.6939]
EGO PCE SSG w = 8 Combined (94473/94473, 0/0) [75.0002, 374.999] [-2.18734, 11.5910]
EGO PCE PC p = 4 Combined (252/252, 0/0) [75.0002, 374.999] [-2.30398, 11.4164]
EGO PCE PC p = 6 Combined (924/924, 0/0) [75.0002, 374.999] [-2.22130, 12.1568]
EGO PCE PC p = 8 Combined (2574/2574, 0/0) [75.0002, 374.999] [-2.19048, 11.6776]
EGO SC SSG w = 1 Aleatory (84/91, 0/0) [75.0002, 374.999] [-2.26264, 11.8623]
EGO SC SSG w = 2 Aleatory (372/403, 0/0) [75.0002, 374.999] [-2.18735, 11.5900]
EGO SC SSG w = 3 Aleatory (1260/1365, 0/0) [75.0002, 374.999] [-2.18732, 11.5900]
EGO SC SSG w = 4 Aleatory (3564/3861, 0/0) [75.0002, 374.999] [-2.18732, 11.5900]
EGO SC SSG w = 4 Combined (1341/1341, 0/0) [75.0002, 374.999] [-2.23439, 12.3640]
EGO SC SSG w = 6 Combined (13683/13683, 0/0) [75.0002, 374.999] [-2.18804, 11.6002]
EGO SC SSG w = 8 Combined (94473/94473, 0/0) [75.0002, 374.999] [-2.18732, 11.5901]

NPSOL PCE SSG w = 1 Aleatory (21/77, 21/77) [75.0000, 375.000] [-2.27098, 11.8829]
NPSOL PCE SSG w = 2 Aleatory (93/341, 93/341) [75.0000, 375.000] [-2.18824, 11.5924]
NPSOL PCE SSG w = 3 Aleatory (315/1155, 315/1155) [75.0000, 375.000] [-2.18732, 11.5900]
NPSOL PCE SSG w = 4 Aleatory (891/3267, 891/3267) [75.0000, 375.000] [-2.18732, 11.5900]
NPSOL PCE SSG w = 4 Combined (1341/1341, 0/0) [75.0000, 375.000] [-2.31709, 17.6167]
NPSOL PCE SSG w = 6 Combined (13683/13683, 0/0) [75.0000, 375.000] [-2.18969, 11.6940]
NPSOL PCE SSG w = 8 Combined (94473/94473, 0/0) [75.0000, 375.000] [-2.18735, 11.5911]
NPSOL SC SSG w = 1 Aleatory (21/77, 21/77) [75.0000, 375.000] [-2.26264, 11.8623]
NPSOL SC SSG w = 2 Aleatory (93/341, 93/341) [75.0000, 375.000] [-2.18735, 11.5901]
NPSOL SC SSG w = 3 Aleatory (315/1155, 315/1155) [75.0000, 375.000] [-2.18732, 11.5900]
NPSOL SC SSG w = 4 Aleatory (891/3267, 891/3267) [75.0000, 375.000] [-2.18732, 11.5900]
NPSOL SC SSG w = 4 Combined (1341/1341, 0/0) [75.0000, 375.000] [-2.23440, 12.3640]
NPSOL SC SSG w = 6 Combined (13683/13683, 0/0) [75.0000, 375.000] [-2.18804, 11.6003]
NPSOL SC SSG w = 8 Combined (94473/94473, 0/0) [75.0000, 375.000] [-2.18733, 11.5901]

LHS 100 LHS 100 N/A (104/104, 0/0) [80.5075, 338.607] [-2.14505, 8.64891]

LHS 1000 LHS 1000 N/A (106/106, 0/0) [76.5939, 368.225] [-2.19883, 11.2353]

LHS 104 LHS 104 N/A (108/108, 0/0) [76.4755, 373.935] [-2.16323, 11.5593]

4.1.2 Epistemic interval estimation

As for the optimization under uncertainty problem described in [14], we will study
the cross-sectional area bh and reliability index β. However, rather than optimizing
the area subject to a constraint on the reliability index, we will determine the output
interval in these metrics resulting from epistemic uncertainties, where the epistemic
variables are taken to be the beam width b and depth h (previously the design vari-
ables) with intervals of [5.0, 15.] and [15., 25.], respectively. The interval optimizer is
either the nongradient-based EGO algorithm, based on successive refinement of Gaus-
sian process surrogate models, or the gradient-based NPSOL algorithm, employing
stochastic sensitivities. Smolyak sparse grids (SSG) with linear growth rules are em-
ployed for tailored total-order PCE and SC with aleatory and combined expansions,
and point collocation (PC) is employed for total-order PCE with an oversampling
ratio of two.

Table 4.1 shows the results for a convergence study with increasing SSG levels for
PCE and SC and increasing PC expansion orders for PCE compared to nested Latin
hypercube sampling. It is evident that the PCE/SC aleatory expansion results using
SSG converge by w = 3 (highlighted in red) with an area interval of [75., 375.] and a β
interval of [−2.18732, 11.5900]. The PCE/SC combined expansion results using SSG
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also converge, although more slowly; by w = 8 (highlighted in green), the PCE results
are accurate only to four digits and the SC results are only accurate to five digits.
SC consistently outperforms PCE for this problem and numerical integration (SSG)
generally provides more accurate results than regression (PC), such that the SC SSG
aleatory expansion approach is the best performer, converging to five or six digits
of accuracy by w = 2 at an expense of 403 limit state function evaluations for EGO
and 341 limit state function and gradient evaluations for NPSOL (both highlighted in
blue). Both gradient-based and nongradient-based interval optimization approaches
converge to the same solution for all cases, indicating monotonicity in the aleatory
metrics as a function of the epistemic parameters, and the gradient-based local ap-
proach requires fewer aleatory expansion reconstructions than the nongradient-based
approach, although the gradient-based reconstructions require the addition of re-
sponse derivative information. The nested sampling results are also converging to the
correct intervals, although the results are only accurate to one or two digits for the
area interval and two or three digits for the reliability index interval after 108 samples
(highlighted in magenta). Comparing this result to the SC SSG aleatory expansion
approach with five digits of accuracy at either 403 or 341 limit state evaluations,
our proposed approach reduces expense by greater than five orders of magnitude while
achieving more precise results. Comparable accuracy could likely have been obtained
with more exhaustive nested sampling (resulting in additional orders of magnitude
in computational savings when requiring comparable interval accuracy), but these
computational experiments were too expensive to perform.

To investigate the issue of the degraded convergence rates for combined expansions,
Figure 4.2 shows a comparison of convergence rates for L2 versus L∞ metrics for
the short column problem, where all five variables are used in combined expansions.
The L∞ metrics are the β intervals shown previously in Table 4.1. For the L2 case,
all five variables are treated as aleatory and convergence in β value is shown1. It is
evident that L2 convergence rates are more rapid than L∞, with approximately five
orders of magnitude reduction in residuals for L∞ compared to approximately ten
orders of magnitude reduction in residuals for L2. Thus, the decreased performance in
combined expansions relative to aleatory expansions is due to more than the increased
dimensionality; the point-wise accuracy required for L∞ is more demanding than the
weak convergence required for L2.

4.2 Cantilever beam

The next test problem involves the simple uniform cantilever beam [43, 52] shown in
Figure 4.3. Random variables in the problem include the yield stress R and Youngs
modulus E of the beam material and the horizontal and vertical loads,X and Y , which

1Note that the different β estimates produced in these two analyses reflect different conditional
expectations and one does not bound the other; rather, the point is relative convergence rates for
different types of metrics.
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Figure 4.2. Convergence rates for combined expansions in
the short column test problem.

are modeled with independent normal distributions using N(40000, 2000), N(2.9E7,
1.45E6), N(500, 100), and N(1000, 100), respectively. Problem constants include L =
100 in. and D0 = 2.2535 in. The beam response metrics have the following analytic
form:

stress =
600

wt2
Y +

600

w2t
X ≤ R (4.2)

displacement =
4L3

Ewt

√

(
Y

t2
)2 + (

X

w2
)2 ≤ D0 (4.3)

These stress and displacement response functions are scaled using stress
R

− 1 and
displacement

D0
− 1, such that negative values indicate safe regions of the parameter space.

For polynomial approximation, a linear variable transformation is used to account for
scaling of the normal PDFs and Hermite orthogonal polynomials are employed in the
transformed standard normal space.
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Figure 4.3. Cantilever beam test problem.

4.2.1 Uncertainty quantification with PCE and SC

Figure 4.4 shows convergence of the mean residuals and Figure 4.5 shows convergence
of the standard deviation residuals for scaled stress and displacement for increasing
quadrature orders and sparse grid levels using tailored PCE, traditional PCE, and
SC. An analytic solution is again unavailable, so residuals are measured relative to an
“overkill” solution such that convergence again slows at residual values below 10−10.
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(a) Scaled stress (TPQ and SSG).
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Figure 4.4. Convergence of mean for PCE and SC in the
cantilever beam test problem.

In Figure 4.4, the only discernible difference appears between the sets of TPQ, linear
SSG, and nonlinear SSG results, with linear/nonlinear SSG outperforming TPQ for
this four-dimensional problem. In Figure 4.5, additional differences are again evident.
For TPQ (red lines), the performance gap between total-order PCE (traditional) and
SC is relatively small, but tensor-product PCE (tailored) is again shown to completely
eliminate it. For nonlinear SSG (blue lines), the heuristic total-order PCE approach
(traditional) is again shown to be nonconservative in its estimation of the order of
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(b) Scaled displacement (TPQ).
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(c) Scaled stress (SSG).
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Figure 4.5. Convergence of standard deviation for PCE
and SC in the cantilever beam test problem.
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expansion to employ, and the synchronized total-order PCE approach (tailored) is
shown to be more rigorous, although it again falls short of the performance of SC.
For linear SSG (green lines), synchronized and heuristic total-order PCE approaches
are again identical and, while the performance gap with SC remains, its magnitude
has been reduced relative to the gap in the nonlinear SSG case. As for the previous
three-dimensional problem (Figure 4.1(b)), SC with linear SSG stands alone as the
most efficient technique.

4.2.2 Epistemic interval estimation

As for the optimization under uncertainty problem described in [14], we will study the
cross-sectional area wt and reliability indices βS and βD for stress and displacement,
respectively. However, rather than optimizing an objective subject to constraints,
we will determine the output interval in these metrics resulting from epistemic un-
certainties, where the epistemic variables are taken to be the beam width w and
thickness t (previously the design variables) with intervals of [1.0, 10.]. The optimizer
is again either the nongradient-based EGO algorithm or the gradient-based NPSOL
algorithm. Smolyak sparse grids (SSG) with linear growth rules are employed for
tailored total-order PCE and SC with aleatory and combined expansions, and point
collocation (PC) is employed for total-order PCE with an oversampling ratio of two.

Table 4.2 shows the results for a convergence study with increasing SSG levels for
PCE and SC and increasing PC expansion orders for PCE compared to nested Latin
hypercube sampling. It is evident that the PCE/SC aleatory expansion results using
SSG converge by w = 3 (highlighted in red) with an area interval of [1., 100.], a
βS interval of [−8.9921, 404.96] and a βD interval of [−9.6345, 1409.6]. While the
nested sampling results are slowly converging to these intervals, accuracy is limited
to at most two digits after 108 samples (highlighted in magenta). The PCE/SC
combined expansions using SSG also appear to be slowly converging to the correct
reliability index intervals, but upper bound accuracy is poor even at the highest
w = 8 level (highlighted in green). In addition, the reliability index upper bounds for
most of the SC combined expansions have diverged resulting from negative expansion
variance (this cannot happen with PCE, but is possible for SC, particularly for sparse
grids when collocation weights can be negative – see Eqs. 3.27 and 3.29). Again,
the PCE PC regression-based results scale well, but accuracy lags SSG numerical
integrations. In addition, the PCE PC combined expansion approach does not appear
to be converging, likely due to ill-conditioning in the linear least squares solution.
Overall, the SC aleatory expansion approach using SSG is the best performer, with
good accuracy at w = 2 at the cost of 931 stress and 1960 displacement function
evaluations for EGO or 245 stress and 147 displacement function/gradient evaluations
for NPSOL (both highlighted in blue). Comparing this result to the nested sampling
result, our proposed approach is again much more efficient, reducing expense by five
to six orders of magnitude, while achieving much more precise results, four to six
digits of accuracy instead of zero to two.
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Table 4.2. PCE-based and SC-based interval estimation
results, cantilever beam test problem.

Interv Est UQ Expansion Evaluations
Approach Approach Variables (Fn, Grad) Area βS βD

EGO PCE SSG w=1 Aleatory (108/171/369, 0/0/0) [1.00002, 99.9998] [-9.02367, 406.390] [-9.69101, 1417.85]
EGO PCE SSG w=2 Aleatory (588/931/1960, 0/0/0) [1.00002, 99.9998] [-8.99220, 404.967] [-9.63475, 1409.61]
EGO PCE SSG w=3 Aleatory (2412/3819/8040, 0/0/0) [1.00002, 99.9998] [-8.99211, 404.963] [-9.63448, 1409.57]
EGO PCE SSG w=4 Aleatory (8172/12939/27240, 0/0/0) [1.00002, 99.9998] [-8.99211, 404.963] [-9.63448, 1409.57]
EGO PCE PC p=1 Aleatory (120/200/400, 0/0/0) [1.00002, 99.9998] [-9.12054, 411.796] [-9.64808, 1413.25]
EGO PCE PC p=2 Aleatory (360/570/1230, 0/0/0) [1.00002, 99.9998] [-8.98064, 404.434] [-9.63209, 1409.51]
EGO PCE PC p=3 Aleatory (840/1330/2800, 0/0/0) [1.00002, 99.9998] [-8.99177, 404.954] [-9.63600, 1409.83]
EGO PCE PC p=4 Aleatory (1680/2660/5600, 0/0/0) [1.00002, 99.9998] [-8.99218, 404.965] [-9.63455, 1409.58]
EGO PCE SSG w=4 Combined (2381/2381/2381, 0/0/0) [1.00002, 99.9998] [-12.0227, 28.4165] [-12.8208, 13.9021]
EGO PCE SSG w=6 Combined (30869/30869/30869, 0/0/0) [1.00002, 99.9998] [-9.83782, 223.547] [-10.9817, 60.0065]
EGO PCE SSG w=8 Combined (266489/266489/266489, 0/0/0) [1.00002, 99.9998] [-9.11001, 262.701] [-9.95681, 160.428]
EGO PCE PC p=4 Combined (420/420/420, 0/0/0) [1.00002, 99.9998] [-3.35535, 1.66796] [-2.65216, 1.09272]
EGO PCE PC p=6 Combined (1848/1848/1848, 0/0/0) [1.00002, 99.9998] [-7.85646, 3.94742] [-5.22114, 9.56123]
EGO PCE PC p=8 Combined (6006/6006/6006, 0/0/0) [1.00002, 99.9998] [-6.82211, 2.37481] [-4.98694, 5.05946]
EGO SC SSG w=1 Aleatory (108/171/378, 0/0/0) [1.00002, 99.9998] [-9.01837, 406.164] [-9.68682, 1417.22]
EGO SC SSG w=2 Aleatory (588/931/1960, 0/0/0) [1.00002, 99.9998] [-8.99211, 404.962] [-9.63453, 1409.56]
EGO SC SSG w=3 Aleatory (2412/3819/8040, 0/0/0) [1.00002, 99.9998] [-8.99211, 404.962] [-9.63448, 1409.55]
EGO SC SSG w=4 Aleatory (8172/12939/27240, 0/0/0) [1.00002, 99.9998] [-8.99211, 404.962] [-9.63448, 1409.56]
EGO SC SSG w=4 Combined (2381/2381/2381, 0) [1.00002, 99.9998] [-1.26801, ∞] [-1.95236, ∞]
EGO SC SSG w=6 Combined (30869/30869/30869, 0) [1.00002, 99.9998] [-10.0003, ∞] [-2.25563, ∞]
EGO SC SSG w=8 Combined (266489/266489/266489, 0) [1.00002, 99.9998] [-9.14279, 1479.76] [-2.23834, ∞]

NPSOL PCE SSG w=1 Aleatory (27/45/27, 27/45/27) [1.00000, 100.000] [-9.03007, 406.393] [-9.69101, 1417.85]
NPSOL PCE SSG w=2 Aleatory (147/245/147, 147/245/147) [1.00000, 100.000] [-8.99855, 404.970] [-9.63476, 1409.62]
NPSOL PCE SSG w=3 Aleatory (603/1005/603, 603/1005/603) [1.00000, 100.000] [-8.99846, 404.966] [-9.63449, 1409.58]
NPSOL PCE SSG w=4 Aleatory (2043/3405/2043, 2043/3405/2043) [1.00000, 100.000] [-8.99846, 404.966] [-9.63449, 1409.58]
NPSOL PCE SSG w=4 Combined (2381/2381/2381, 0/0/0) [1.00000, 100.000] [11.1547, 28.4187] [0.195964, 13.9033]
NPSOL PCE SSG w=6 Combined (30869/30869/30869, 0/0/0) [1.00000, 100.000] [-9.83785, 204.271] [11.8015, 52.6142]
NPSOL PCE SSG w=8 Combined (266489/266489/266489, 0/0/0) [1.00000, 100.000] [-9.11003, 262.716] [-9.95684, 151.372]
NPSOL SC SSG w=1 Aleatory (27/45/27, 27/45/27) [1.00000, 100.000] [-9.02482, 406.167] [-9.68682, 1417.22]
NPSOL SC SSG w=2 Aleatory (147/245/147, 147/245/147) [1.00000, 100.000] [-8.99846, 404.966] [-9.63453, 1409.57]
NPSOL SC SSG w=3 Aleatory (603/1005/603, 603/1005/603) [1.00000, 100.000] [-8.99846, 404.965] [-9.63449, 1409.56]
NPSOL SC SSG w=4 Aleatory (2043/3405/2043, 2043/3405/2043) [1.00000, 100.000] [-8.99846, 404.965] [-9.63449, 1409.56]
NPSOL SC SSG w=4 Combined (2381/2381/2381, 0/0/0) [1.00000, 100.000] [-13.7392, ∞] [-16.0560, ∞]
NPSOL SC SSG w=6 Combined (30869/30869/30869, 0/0/0) [1.00000, 100.000] [-10.0004, ∞] [-10.9630, ∞]
NPSOL SC SSG w=8 Combined (266489/266489/266489, 0/0/0) [1.00000, 100.000] [-9.14282, 1482.83] [-9.88943, ∞]

LHS 100 LHS 100 N/A (104/104/104, 0/0/0) [1.69100, 88.0090] [-8.31258, 324.114] [-9.34799, 1119.22]

LHS 1000 LHS 1000 N/A (106/106/106, 0/0/0) [1.18837, 96.1182] [-8.85165, 381.884] [-9.55299, 1304.75]

LHS 104 LHS 104 N/A (108/108/108, 0/0/0) [1.11023, 98.8855] [-8.96612, 398.167] [-9.59256, 1376.45]
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To again investigate the issue of degraded convergence rates for combined expansions,
Figure 4.6 shows a comparison of convergence rates for L2 versus L∞ metrics for the
cantilever beam problem, where all six variables are used in combined expansions.
The L∞ metrics are the β intervals shown previously in Table 4.2. For the L2 case,
all six variables are treated as aleatory and convergence in β value is shown. It
is evident that L2 convergence rates are again more rapid than L∞ (approximately
four orders of magnitude residual reduction compared to, at best, approximately two
orders of reduction).
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Figure 4.6. Convergence rates for combined expansions in
the cantilever beam test problem.

4.3 Ishigami

The previous two test functions are rational functions with limited regularity, which
can degrade convergence rates in polynomial approximations. The Ishigami test prob-
lem [41] is a smooth C∞ function:

f(x) = sin(2x1 − π) + 7 sin2(2πx2 − π) + 0.1(2πx3 − π)4 sin(2πx1 − π) (4.4)

The distributions for x1, x2, and x3 are iid uniform on [0,1]. A linear scaling trans-
formation is applied and Legendre orthogonal polynomials are employed in the trans-
formed space.
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4.3.1 Epistemic interval estimation

In Figure 4.7, a comparison of convergence rates is shown for L2 versus L∞ metrics for
the Ishigami problem, where all three variables are used in combined expansions. For
the L2 case, all three variables are treated as aleatory and convergence in β value is
shown. For the L∞ case, x1 is treated as an epistemic interval while x2 and x3 remain
aleatory, and convergence in the epistemic interval bounds for the aleatory β statistic
is shown (in this case, all interval estimation is just post-processing of the combined
expansion). It is evident that L2 and L∞ convergence rates are quite similar for this
smooth C∞ function: SC convergence plots are nearly on top of one another and the
PCE convergence plots have a fairly consistent residual gap throughout. Thus, it
appears that point-wise L∞ accuracy can be achieved at similar cost to L2 accuracy,
provided that the function is sufficiently smooth.
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4.4 Sobol’s g function

At the opposite end of the smoothness spectrum, Sobol’s g-function [41] is C0 with
the absolute value contributing a slope discontinuity at the center of the domain:

f(x) = 2
5

∏

j=1

|4xj − 2| + aj

1 + aj
; a = [0, 1, 2, 4, 8] (4.5)

The distributions for xj for j = 1, 2, 3, 4, 5 are iid uniform on [0,1]. A linear scaling
transformation is applied and Legendre orthogonal polynomials are employed in the
transformed space.

Without any mitigation measures (e.g., discretization of the random domain), we
expect for smooth global polynomial approximations to exhibit Gibbs phenomena
near the discontinuity, resulting in slow convergence in L2 measures.

4.4.1 Epistemic interval estimation

In Figure 4.8, a comparison of convergence behavior is shown for L2 versus L∞ metrics
for the Sobol g-function problem, where all five variables are used in combined expan-
sions. Since convergence rates are relatively poor in this case, an overkill reference
solution is not available and residuals cannot be reliably estimated. Rather, the val-
ues of the statistics are plotted directly and general convergence trends are inferred.
For the L2 case, all five variables are treated as aleatory and slow convergence in β

value is apparent with agreement between the PCE and SC estimates. For the L∞
case, x1 and x2 are treated as epistemic intervals while x3 through x5 remain aleatory
and the resulting L∞ intervals can be seen to be neither converging nor consistent
between PCE and SC. Thus, one can infer that point-wise L∞ accuracy may not be
attainable for nonsmooth functions. In fact, one might anticipate divergence in some
L∞ metrics in the presence of Gibbs oscillations of increasing amplitude.
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Chapter 5

Accomplishments and Conclusions

The goal of this milestone was to develop second-order probability approaches for
mixed aleatory-epistemic uncertainty quantification that can be more accurate (via
precise bounds from optimizers) and more efficient (via exponential convergence
rates from stochastic expansion methods) than nested sampling. Computational ex-
periments have demonstrated that the coupling of local gradient-based and global
nongradient-based optimizers with nonintrusive polynomial chaos and stochastic col-
location expansion methods is highly effective, and provides interval bounds on statis-
tics for two model problems using O(102) −O(103) simulations that are significantly
more accurate than those obtainable from O(108) simulations in the traditional nested
sampling approach.

5.1 Observations on optimization-based interval es-

timation

While there are many different possible optimization algorithms that could be ex-
amined, we focused on two: the global nongradient-based EGO algorithm, based on
successive refinement of Gaussian process surrogate models, and the local gradient-
based NPSOL algorithm, employing stochastic sensitivities. Key considerations in
these selections include data reuse between interval minimization and maximization
steps, support for nonsmooth and/or multimodal response functions, and scalability
to large numbers of epistemic parameters. For the first two considerations, global
methods are more effective, and for the last consideration, local methods are more
effective. Table 5.1 provides additional details.

Additional observations for optimization-based interval estimation include:

• In addition to EGO, global methods supporting data reuse include DIRECT
(reuse of box partitioning data within minimization and maximization Pareto
frontiers) and other global surrogate-based approaches. DIRECT will be of fu-
ture interest since it avoids potential issues with Gaussian process ill-conditioning,
scaling, etc.
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Table 5.1. Comparison of local and global optimization-
based interval estimation.

Algorithm
Type Pro Con

Global

• Global data reuse

• Responses may be multi-
modal and nonsmooth

• Gradients not required

• Supports only up to O(101)
epistemic variables

• “Soft” convergence is not as
precise

Local

• Epistemic dimension may be
large scale

• “Hard” convergence at KKT
points to tight precision

• Only initial point reuse

• Response should be smooth
and unimodal

• Gradients should be accurate
and reliable

• Another attractive future method would be EGO employing gradients (utilizing
the concept of “gradient-based kriging”). This would retain the desirable global
identification properties of EGO, but take advantage of the stochastic sensitivity
capabilities to improve the accuracy of the Gaussian process models in order
to accelerate the epistemic search. This would likely also mitigate epistemic
dimensionality issues to some degree.

5.2 Observations on stochastic expansions

This report has included investigation of the relative performance of non-intrusive
generalized polynomial chaos and Lagrange interpolation-based stochastic colloca-
tion methods applied to algebraic benchmark problems with known solutions. The
primary distinction between these methods is that PCE must estimate coefficients for
a known basis of orthogonal polynomials (using sampling, linear regression, tensor-
product quadrature (TPQ), or Smolyak sparse grids (SSG)) whereas SC must form
an interpolant for known coefficients (using TPQ or SSG).

Performance between these methods is shown to be very similar and both demonstrate
impressive efficiency relative to Monte Carlo sampling methods and impressive accu-
racy relative to local reliability methods, thereby providing a more effective balance of
accuracy and efficiency over current production UQ methods for aleatory uncertainty.
When a difference is observed between traditional PCE and SC using the same col-
location point sets, SC has been the consistent winner, typically manifesting in the
reduction of the required integration by one order or level. This difference can be
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attributed at least in part to expansion/integration synchronization issues with PCE,
motivating approaches for tailoring of chaos expansions that closely synchronize with
numerical integration schemes:

• For the case of TPQ, tailored tensor-product PCE is shown to perform iden-
tically to SC such that the performance gap is completely eliminated. Both
methods consistently outperform traditional total-order PCE. However, TPQ
approaches only outperform SSG approaches for the lowest dimensional prob-
lems.

• For problems with greater than two dimensions, SSG approaches are shown to
outperform TPQ approaches.

– For SSG, selection of a synchronized PCE formulation is nontrivial and
the tailored total-order PCE approach, which computes the maximal total-
order expansion that can be resolved by a particular SSG, is shown to be
more rigorous and reliable than heuristics and eliminates inefficiency due
to trial and error.

– A significant performance gap relative to SC with SSG still remains for
the case of nonlinear growth rules, but replacement of these rules with
linear ones (for Gaussian quadratures that are at most weakly nested)
reduces the set of resolvable monomials that do not appear in the total-
order expansion, resulting in a further reduction of the performance gap.

While efforts in tailoring the form of the PCE can reduce and in some cases eliminate
the performance gap with SC, no nonintrusive PCE approach has been shown to
outperform SC when using the same set of collocation points. Rather, usage of
PCE remains motivated by other considerations, in particular its greater flexibility in
collocation point selection and coefficient estimation approaches. In particular, PCE
allows for:

• usage of unstructured/random collocation point sets (with random sampling
and linear regression approaches) that can support greater simulation fault tol-
erance

• Genz cubature grids that support more optimal numerical integration than SSG,
at least for low order rules

• linear regression approaches that may enable approximate resolution of higher
random dimensions and higher expansion orders than SSG approaches

In addition, a guarantee of positive expansion variance is a feature of PCE not pro-
vided by SC, and this can be particularly important when computing intervals on
variance-related metrics. Thus, PCE and SC provide their own sets of strengths

65



and weaknesses and selection between the two approaches remains dependent on the
efficiency and flexibility requirements of specific applications.

Another type of stochastic expansion tailoring that was explored is the selection of
basis polynomials along with their associated Gauss points and weights. For inde-
pendent random variables with density functions outside of the Askey family, two
approaches are supported: (1) nonlinear variable transformation of the non-Askey
density function to the most similar Askey density, or (2) numerical generation of
polynomials that are orthogonal with respect to an arbitrary density. Mixed results
were shown in which simple polynomial response functions showed clear benefit from
the numerically-generated basis, but rational response functions with non-Askey vari-
ables in the denominator required lower order response expansions using the variable
transformation approach. It is expected that the special conditions met in the ratio-
nal function examples will be the exception rather than the rule, and that numerically
generated polynomials will generally be preferred; however, additional computational
experience is needed.

5.3 Observations on second-order probability

The preferred UQ approaches identified in stochastic expansion computational exper-
iments are (1) SC with TPQ for low dimensions and linear growth SSG for high di-
mensions, and (2) tailored PCE with TPQ for low dimensions and either linear growth
SSG or linear regression for high dimensions. These approaches are carried forward in
epistemic interval estimation studies employing two stochastic expansion/sensitivity
approaches (aleatory and combined expansions) and two optimization approaches
(local gradient-based and global nongradient-based).

For the expansion/sensitivity approaches, the first approach forms expansions only
over the aleatory uncertain variables for both the response values and the response
sensitivities. It is a first-order technique requiring accurate derivatives of the response
function with respect to the epistemic variables; derivatives of aleatory statistics
with respect to epistemic variables are formed based on aleatory expectations of
epistemic response derivatives. The second approach forms combined expansions
of response values over both the aleatory and epistemic variables. It is a zeroth-
order technique; derivatives of statistics are formed by differentiating the polynomial
relationship between the aleatory statistics (formed from integrating out the aleatory
expansion terms) and the remaining epistemic expansion terms. While it is shown
that both approaches are capable of exact results, computational experiments indicate
that the former aleatory expansion approach is generally more efficient and reliable
(so long as the underlying epistemic response derivatives are reliable) for use within
optimization-based interval estimation. This appears to be due to two factors:

1. Convergence rates can be degraded when computing point-wise L∞ metrics
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(minima and maxima) from stochastic expansions. Rational, infinitely differen-
tiable, and discontinuous response functions were investigated, and only for the
smooth C∞ case were the L2 and L∞ convergence rates comparable. Thus, for
general functions that may not be infinitely differentiable, it appears preferable
to restrict stochastic expansion approximation to dimensions requiring aleatory
L2 metrics (mean, variance, probability) and to handle dimensions requiring
epistemic L∞ metrics (interval bounds) through other means (i.e., direct opti-
mization without stochastic expansion approximation).

2. The previous statement assumes sparse interrogation of the epistemic space by
efficient local and global optimizers. For second-order probability in which a
single interval is computed for each response function, the number of epistemic
point evaluations is relatively small, such that the cost of resolving the aleatory
statistics for only selected instances of the nonprobabilistic parameters (aleatory
expansions) one at a time may tend to be more efficient than attempting to
globally resolve these statistics for all values of the nonprobabilistic parameters
(combined expansions) all at once. For more finely-discretized epistemic analy-
ses such as Dempster-Shafer theory of evidence, the interrogation requirements
for the epistemic space may grow substantially, such that combined expansions
may prove useful in this case. Moreover, development of more rapidly con-
verging approaches in L∞ for combined expansions may be possible and may
become motivated by the Dempster-Shafer use case.

For the optimization approaches, the first approach employs the stochastic sensitiv-
ities from the aleatory or combined expansions to perform a local gradient-based
search for minima and maxima of the response metrics over the epistemic parame-
ter ranges. As for all local gradient-based methods (and as discussed previously in
Section 5.1), it requires response metrics that are smooth and unimodal over the epis-
temic space to be effective. The second approach employs a nongradient-based global
search for minima and maxima. It is a zeroth-order technique that only requires
accurate predictions of the aleatory statistic values over the epistemic space. In both
the short column and cantilever beam test problems, the aleatory statistics behaved
monotonically over the epistemic parameter ranges, such that both local and global
searches located the same solutions. For the short column problem, the expense of
the best local and global approaches was comparable (341 limit state function and
gradient evaluations for NPSOL versus 403 limit state function evaluations for EGO);
whereas in the cantilever beam problem, the local search displayed greater efficiency
(245 stress and 147 displacement function/gradient evaluations for NPSOL versus
931 stress and 1960 displacement function evaluations for EGO). Overall, these ex-
periments are consistent with the anticipated trade-off between the scalability and
efficiency of local approaches and the robustness of global approaches for nonsmooth,
multimodal problems; although additional experimentation will help quantify these
effects more precisely. Relative to nested sampling in the short column problem,
our new approaches reduce expense by greater than five orders of magnitude while
achieving more precise results (five to six digits of accuracy in the output intervals
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instead of only one to three digits). And in the cantilever beam problem, our new
approaches are again much more efficient, reducing expense by five to six orders of
magnitude, while again achieving more precise results, four to six digits of accuracy
instead of only zero to two.

Additional observations include:

• Since the relative computational expense of the local and global optimization
approaches is only relevant for point-wise aleatory expansions, the greater al-
gorithmic robustness of the global EGO approach is recommended for interval
estimation on combined expansions, since these expansions only involve inex-
pensive post-processing in either optimization case.

• Overall, the most effective SOP approach was SC using linear SSG with expan-
sions formed only over the aleatory variables for each instance of the epistemic
variables. In this case, the selection between local and global optimization is
relevant and should be based on the efficiency, scalability, and algorithmic ro-
bustness concerns previously identified.

• This report explored global-global and local-global combinations for outer-inner
nested loops to support either algorithmic robustness or scalability with respect
to epistemic dimension. To sacrifice algorithmic robustness in exchange for scal-
ability with respect to aleatory dimension, global stochastic expansions could be
replaced with local gradient-based reliability methods for aleatory UQ. Overall,
global-global, local-global, global-local, and local-local combinations are all eas-
ily configured in DAKOTA, allowing one to tailor the approach for robustness
or scalability separately within epistemic and aleatory domains.

• In future research, dimension-adaptive stochastic expansion methods will bet-
ter address the curse of dimensionality, allowing usage of global machinery at
reduced cost for larger problems.

5.4 Accomplishments, Capability Development, and

Deployment

This milestone crosscuts multiple centers, drawing on capabilities for uncertainty
analysis from DAKOTA (1410), device and circuit simulation from Charon and Xyce
(1430), and QASPR data analysis, model development, and program relevance (0410,
1340, 1430, 1540). Many new capabilities have been developed and tested within the
DAKOTA code for use in this milestone, including:

• stochastic expansions over nonprobabilistic dimensions
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• stochastic sensitivity analysis capabilities for aleatory and combined expansions

• local gradient-based and global nongradient-based optimization approaches to
epistemic interval estimation with data reuse among minimization and maxi-
mization solves

• nested analyses within second-order probability and Dempster-Shafer methods
for mixed aleatory-epistemic UQ

New capabilities developed for this milestone are being inserted into production UQ
analysis procedures for current and future radiation effects studies, and this trend is
expected to continue with V&V efforts in other program areas.
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